请输入您要查询的百科知识:

 

词条 范德蒙行列式
释义

定义

范德蒙行列式就是在求线形递归方程通解的时候计算的行列式.若递归方程的n个解为a1,a2,a3,...,an则范德蒙行列式为: | 1 1 1 1 ... 1 |

| a1 a2 a3 ... an |

| a1^2 a2^2 ....an^2 . |

| ... .... |

| a1^(n-1) a2^(n-1) ...an^(n-1) |

共n行n列用数学归纳法. 当n=2时 范德蒙德行列式D2=x2-x1范德蒙德行列式成立 现假设范德蒙德行列式对n-1阶也成立,对于n阶有: 首先要把Dn降阶,从第n行起用后一行减去前一行的x1倍,然后按第一行进行展开,就有Dn=(x2-x1)(x3-x1)...(xn-x1)Dn-1于是就有Dn=∏ (xi-xj)(其中∏ 表示连乘符号,其下标i,j的取值为m>=i>j>=2),原命题得证.

基本内容

范德蒙德行列式的标准形式为:即n阶范德蒙行列式等于这个数的所有可能的差的乘积。根据范德蒙德行列式的特点,可以将所给行列式化为范德蒙德行列式,然后利用其结果计算。常见的方法有以下几种。1利用加边法转化为范德蒙行列式例1:计算n阶行列式分析:行列式与范德蒙行列式比较

例:

缺行的类似范德蒙行列式 1 1 1 1

a b c d

a^2 b^2 c^2 d^2

a^4 b^4 c^4 d^4

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/25 8:15:31