请输入您要查询的百科知识:

 

词条 反函数全览
释义

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x)。则y=f(x)的反函数为y= f ‘(x)。 存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)

【反函数的性质】

(1)互为反函数的两个函数的图象关于直线y=x对称;

(2)函数存在反函数的必要条件是,函数的定义域与值域是一一映射;

(3)一个函数与它的反函数在相应区间上单调性一致;

(4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a,x∈{0})。奇函数不一定存在反函数。关于y轴对称的函数(偶函数)大部分没有反函数。被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

(5)一切隐函数具有反函数;

(6)一段连续的函数的单调性在对应区间内具有一致性;

(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。

(8)反函数是相互的

(9)定义域、值域相反对应法则互逆(三反)

(10)原函数一旦确定,反函数即确定(三定)

2、反函数的分段求法

(1)分别求出各段函数的反函数。

(2)将反函数合在一起

例:求f(x)={x^2+1,x<=-1;-x+1,x>-1}的反函数

解:当x<=-1时,y=f(x)=x^2+1>=2.

又有y=x^2+1得,x=-(y-1)^(1/2).

大家应该会解吧

^-^

3、反函数的定义

一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= f(y). 若对于y在C中的任何一个值,通过x= f(y),x在A中都有唯一的值和它对应,那么,x= f(y)就表示y是自变量,x是因变量y的函数,这样的函数x= f(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f‘(y). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 说明:⑴在函数x=f’(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f’(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式. ⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f‘(x),那么函数y=f’(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f‘(x)互为反函数. ⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f‘(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f’(x)的值域;函数y=f(x)的值域正好是它的反函数y=f’(x)的定义域(如下表): 函数y=f(x) 反函数y=f’(x) 定义域 A C 值 域 C A ⑷上述定义用“逆”映射概念可叙述为: 若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数x=f’(x)就叫做函数y=f(x)的反函数. 反函数x=f‘(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f’(t)=t/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f‘(x)=x/2-3. 有时是反函数需要进行分类讨论,如:f(x)=X+1/X,需将X进行分类讨论:在X大于0时的情况,X小于0的情况,多是要注意的。一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a 反函数的应用: 直接求原函数的值域困难时,可以通过求其反函数的定义域来确定原函数的值域,求反函数的步骤是这样的 1.先求出反函数的定义域,因为原函数的值域就是反函数的定义域 (我们知道函数的三要素是定义域,值域,对应法则,所以先求反函数的定义域是球反函数的第一步) 2.反解x,也就是用y来表示x 3.改写,交换位置,也就是把x改成y,把y改成x 4.写出原函数及其值域

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 11:19:39