请输入您要查询的百科知识:

 

词条 二进制计数法
释义

二进制就是逢二进一,逢二进一最好的实例是时间,两个12小时之后,手表上的日期就增加1天。二进制与十进制之间的联系在于: 二进制只有0和1两个符号,二进制111表示的十进制数是7,而二进制数10111011则等于十进制数187

介绍

发现

18世纪德国数理哲学大师莱布尼兹从他的传教士朋友鲍威特寄给他的拉丁文译本《易经》中,读到了八卦的组成结构,惊奇地发现其基本素数(0)(1),即《易经》的阴爻- -和__阳爻,其进位制就是二进制,并认为这是世界上数学进制中最先进的。

二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。

二进制是一种非常古老的进位制,由于在现代被用于电子计算机中,而旧貌换新颜变得身价倍增起来。

在现实生活和记数器中,如果表示数的“器件”只有两种状态,如电灯的“亮”与“灭”,开关的“开”与“关”。一种状态表示数码0,另一种状态表示数码1,1加1应该等于2,因为没有数码2,只能向上一个数位进一,就是采用“满二进一”的原则,这和十进制是采用“满十进一”原则完全相同。

1+1=10,10+1=11,11+1=100,100+1=101,

101+1=110,110+1=111,111+1=1000,……,

可见二进制的10表示二,100表示四,1000表示八,10000表示十六,……。

二进制同样是“位值制”。同一个数码1,在不同数位上表示的数值是不同的。如11111,从右往左数,第一位的1就是一,第二位的1表示二,第三位的1表示四,第四位的1表示八,第五位的1表示十六。用大家熟悉的十进制说明这个二进制数的含意,有以下关系式

(11111)(二进制)=1×2^4+1×2^3+1×2^2+1×2+1^0(十进制)(^代表次方,例如:1的2次方等于1^2)

一个二进制整数,从右边第一位起,各位的计数单位分别是1,2,22,23,…,2n,…。

计算机中的二进制

计算机内部之所以采用二进制,其主要原因是二进制具有以下优点:

(1)技术上容易实现。用双稳态电路表示二进制数字0和1是很容易的事情。

(2)可靠性高。二进制中只使用0和1两个数字,传输和处理时不易出错,因而可以保障计算机具有很高的可靠性。

(3)运算规则简单。与十进制数相比,二进制数的运算规则要简单得多,这不仅可以使运算器的结构得到简化,而且有利于提高运算速度。

(4)与逻辑量相吻合。二进制数0和1正好与逻辑量“真”和“假”相对应,因此用二进制数表示二值逻辑显得十分自然。

(5)二进制数与十进制数之间的转换相当容易。人们使用计算机时可以仍然使用自己所习惯的十进制数,而计算机将其自动转换成二进制数存储和处理,输出处理结果时又将二进制数自动转换成十进制数,这给工作带来极大的方便。

各进制相互转换

计算机中常用的数的进制主要有:二进制、八进制、十六进制。

2进制,用两个阿拉伯数字:0、1;

8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;

10进制,用十个阿拉伯数字:0到9;

16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这六个字母来分别表示10,11,12,13,14,15。字母不区分大小写。

以下简介各种进制之间的转换方法:

(1-1)二进制转换十进制

例:二进制 “1101100”

1101100 ←二进制数

6543210 ←排位方法

例如二进制换算十进制的算法:

1*26 + 1*25 + 0*24 + 1*23 + 1* 22 + 0*21 + 0*20

↑ ↑

说明:2代表进制,后面的数是次方(从右往左数,以0开始)

=64+32+0+8+4+0+0

=108

(1-2)二进制换算八进制

例:二进制的“10110111011”

换八进制时,从右到左,三位一组,不够补0,即成了:

010 110 111 011

然后每组中的3个数分别对应4、2、1的状态,然后将为状态为1的相加,如:

010 = 2

110 = 4+2 = 6

111 = 4+2+1 = 7

011 = 2+1 = 3

结果为:2673

(1-3)二进制转换十六进制

十六进制换二进制的方法也类似,只要每组4位,分别对应8、4、2、1就行了,如分解为:

0101 1011 1011

运算为:

0101 = 4+1 = 5

1011 = 8+2+1 = 11(由于10为A,所以11即B)

1011 = 8+2+1 = 11(由于10为A,所以11即B)

结果为:5BB

(2-1)八进制数转换为十进制数

八进制就是逢8进1。

八进制数采用 0~7这八数来表达一个数。

八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……

所以,设有一个八进制数:1507,转换为十进制为:

计算: 7 * 80 + 0 * 81 + 5 * 82 + 1 * 83 = 839

结果是,八进制数 1507 转换成十进制数为 839

(2-2)十六进制转换十进制

例:2AF5换算成10进制

直接计算就是: 5 * 160 + F * 161 + A * 162 + 2 * 163 = 10997

(别忘了,在上面的计算中,A表示10,而F表示15)、

1.二进制与十进制的转换

(1)二进制转十进制<BR>方法:"按权展开求和"

例:

(1011.01)2 =(1×23+0×22+1×21+1×20+0×2-1+1×2-2)10

=(8+0+2+1+0+0.25)10

=(11.25)10

(3-1)十进制转二进制

· 十进制整数转二进制数:"除以2取余,逆序输出"

例: (89)10=(1011001)2

2 89

2 44 …… 1

2 22 …… 0

2 11 …… 0

2 5 …… 1

2 2 …… 1

2 1 …… 0

0 …… 1

· 十进制小数转二进制数:"乘以2取整,顺序输出"

例:

(0.625)10= (0.101)2

0.625

X 2

1.25

X 2

0.5

X 2

1.0

(3-2)八进制与二进制的转换

例:将八进制的37.416转换成二进制数:

37 . 4 1 6

011 111 .100 001 110

即:(37.416)8 =(11111.10000111)2

例:将二进制的10110.0011 转换成八进制:

0 1 0 1 1 0 . 0 0 1 1 0 0

2 6 . 1 4

即:(10110.011)2 =(26.14)8

(3-3)十六进制与二进制的转换

例:将十六进制数5DF.9 转换成二进制:

5 D F . 9

0101 1101 1111.1001

即:(5DF.9)16 =(10111011111.1001)2

例:将二进制数1100001.111 转换成十六进制:

0110 0001 . 1110

6 1 . E

即:(1100001.111)2 =(61.E)16

转换的基本概念

1.二进制数转换成十进制数

由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。

将二进制数转换成十进制中的某个数。例如:110101=1*2的五次方+1*2的四次方+0*2的三次方+1*2的二次方+0*2的一次方.等于十进制的数53

将二进制数的第一位乘2的位数减一次方、例如110共3个数、第一个就用1×2的二次方......

2.十进制数转换为二进制数

十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。

3.十进制整数转换为二进制整数

十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

4.十进制小数转换为二进制小数

十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。

然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/27 7:14:54