词条 | 二次元不等式 |
释义 | 概念含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式,它的一般形式是ax^2+bx+c>0或ax^2+bx+c<0(a不等于0),其中ax^2+bx+c实数域上的二次三项式。 一元二次不等式的解法 1)当V("V"表示判别式,下同)=b^2-4ac>=0时,二次三项式,ax^2+bx+c有两个实根,那么ax^2+bx+c总可分解为a(x-x1)(x-x2)的形式。这样,解一元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集就是这两个一元一次不等式组的解集的并集。 还是举个例子吧。 2x^2-7x+6<0 利用十字相乘法 2 -3 1 -2 得(2x-3)(x-2)<0 然后,分两种情况讨论: 一、2x-3<0,x-2>0 得x<1.5且x>2。不成立 二、2x-3>0,x-2<0 得x>1.5且x<2。 得最后不等式的解集为:1.5<x<2。 另外,你也可以用配方法解二次不等式: 2x^2-7x+6 =2(x^2-3.5x)+6 =2(x^2-3.5x+3.0625-3.0625)+6 =2(x^2-3.5x+3.0625)-6.125+6 =2(x-1.75)^2-0.125<0 2(x-1.75)^2<0.125 (x-1.75)^2<0.0625 两边开平方,得 x-1.75<0.25且x-1.75>-0.25 x<2且x>1.5 得不等式的解集为1.5<x<2 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。