请输入您要查询的百科知识:

 

词条 丢番图方程
释义

丢番图方程(Diophantine Equation):有一个或者几个变量的整系数方程,它们的求解仅仅在整数范围内进行。最后这个限制使得丢番图方程求解与实数范围方程求解有根本的不同。

丢番图方程又名不定方程、整系数多项式方程,是变量仅容许是整数的多项式等式;即形式如右上角图的方程,其中所有的aj、bj和c均是整数,若其中能找到一组整数解m1,m2...mn者则称之有整数解。

丢番图问题有数条等式,其数目比未知数的数目少;丢番图问题要求找出对所有等式都成立的整数组合。对丢番图问题的数学研究称为丢番图分析。

3世纪希腊数学家亚历山大城的丢番图曾对这些方程进行研究。

丢番图方程的例子有贝祖等式、勾股定理的整数解、四平方和定理和费马最后定理等

丢番图生平

代数之父─丢番图(Diophantine)是一位古希腊的大数学家,为第一位懂得使用符号代表数来研究问题的人。 其中丢番图最著名的可能就是他的墓志铭了:

「坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路。

上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛。

五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓。

悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途。 」

我们可以从中知道:“丢番图的一生,幼年占1/6,青少年占1/12,又过了1/7才结婚,5年后生子,子先父4年而卒,寿为其父之半。”计算丢番图的方程为X/6 + X/12 + X/7 + 5 + X/2 + 4 = X,X = 84,由此知道丢番图享年84岁。

一次不定方程

一次不定方程是形式如a1x1 + a2x2 + ... + anxn = c的方程,一次不定方程有整数解的充要条件为: (a1,...,an)须是c的因子,其中(a1,...,an)表示a1,...,an的最大公因子。

若有二元一次不定方程ax + by = c,且(a,b) | c,则其必有一组整数解x1,y1,并且还有以下关系式:

* x = x1 + [b / (a,b)]t

* y = y1 − [a / (a,b)]t

t为任意整数,故此一次不定方程有无限多解。请参见贝祖等式。

丢番图分析

经典问题

* 有解答吗?

* 除了一些显然易见的解答外,还有哪些解答?

* 解答的数目是有限还是无限?

* 理论上,所有解答是否都能找到?

* 实际上能否计算出所有解答?

希尔伯特第十问题

1900年,希尔伯特提出丢番图问题的可解答性为他的23个问题中的第10题。1970年,一个数理逻辑的结果马蒂雅谢维奇定理(Matiyasevich's theorem)说明:一般来说,丢番图问题都是不可解的。更精确的说法是,不可能存在一个算法能够判定任何丢番图方程式否有解,甚至,在任何相容于皮亚诺算数的系统当中,都能具体构造出一个丢番图方程,使得没有任何办法可以判断它是否有解。

现代研究

* 丢番图集是递归可枚举集。

* 常用的方法有无穷递降法和哈赛原理。

* 丢番图逼近研究了变量为整数,但系数可为无理数的不等式。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/15 17:27:01