词条 | 定点数 |
释义 | 定点数:拼音:dìng diǎn shù 计算机中采用的一种数的表示方法。参与运算的数的小数点位置固定不变。 1.1 无符号数的表示指整个机器字长的全部二进制位均表示数值位,相当于数的绝对值。若机器字长为n+1位,则数值表示为: X=X0X1X2...Xn 其中Xi={0,1}, 0<=i<=n 即X0*2^n + X1*2^(n-1) + X2*2^(n-2) + ... + Xn-1*2 + Xn 数值范围是 0≤X≤2^(n+1) - 1 例如:1111表示15。 1.2 带符号数的表示最高位被用来表示符号位,而不再表示数值位。 例如:1111 是 -7 (1) 定点整数小数点位固定在最后一位之后称为定点整数。若机器字长为n+1位,数值表示为: X=X0X1X2...Xn,其中Xi={0,1},0≤i≤n 即(-1)^X0 * (X1*2^(n-1) + X2*2^(n-2) + ... + Xn-1*2 + Xn) 数值范围是 -(2^n-1)≤X≤2^n-1 例如:1111表示-7。 (2) 定点小数小数点固定在最高位之后称为定点小数。若机器字长为n+1位,数值表示为: X=X0.X1X2...Xn,其中Xi={0,1},0≤i≤n (这里X0不表示数字,只表示符号,若X0=0,则代表X=0.X1X2...Xn,X0=1,则代表-0.X1X2...Xn)。 即 (-1)^X0 * (X1*2^(-1)) + X2*2^(-2) + ... + Xn-1*2^(-n+1) + Xn*2^(-n) 数值范围是 -(1-2^(-n))≤X≤1-2^(-n) 例如:1111表示-0.875 (定点小数也被用在浮点数的尾数(Mantissa)部分) (3) 原码表示原码是用机器数的最高一位代表符号,以下给位给出数值绝对值的表示方法。其定义为: 整数: [X]原=X (0≤ x<2^n) [X]原=2^n-X (-2^n<X≤0) 小数: [X]原=X (0≤X<1) [X]原=1-X (-1<X≤0) 这里X是数的实际值(真值),[X]原为原码表示的机器数。 例如:真值X=+1001,[X]原=01001;真值X=-1001,[X]原=10000-(-1001)=11001;真值X=-0.1001,[X]原=1-(-0.1001)=1.1001。 原码的性质: 1. 符号位+数的绝对值。 2. 0有两个编码。 3. 加减运算规则复杂,乘除运算规则简单。 4. 表示简单,易于和真值之间进行转换。 原码的运算: 加法: 先判断符号位,若相同,绝对值相加,结果符号位不变;若不同,绝对值大的数减去绝对值小的数,符号位和绝对值大的数相同。 [X]原=00010,[Y]原=01010,X+Y=00000+1010+0010=01100;[X]原=10010,[Y]原=01010,X+Y=00000+1010-10=01000。 减法: 将减数符号取反,然后将被减数和符号取反的减数相加。 [X]原=10010,[Y]原=01010,X-Y=10010+11010=10000+0010+1010=11100。 乘法(原码一位乘): 是模拟竖式手算的方法。引入一个值为部分积(初值为0)。符号位是被乘数和乘数符号位的异或值。之后检视乘数(符号位以外)从低向高的每一位,若为1,部分积(对齐最高位)加被乘数(符号位以外),并右移一位;若为0,部分积加0,右移一位。 例如:[X]原=11101,[Y]原=01011。X*Y:符号位S=1⊕0=1 则X*Y=110001111。 除法(交替加减法):符号位为被除数和除数符号位异或获得。之后被除数减除数(补码表示),当余数为正时,商“1”,余数左移一位减除数;当余数为负时,商“0”,余数左移一位,加除数。 例如:[X]原 = 0.1001,[Y]补= 0.1011,X/Y: 余数r0<0,商0 商0,r和q左移一位 加y 余数r1>0,商1 商1,r和q左移一位 减y 余数r2>0,商1 商1,r和q左移一位 减y 余数r3<0,商0 商0,r和q左移一位 加y 余数r4>0,商1 X/Y 的商 [Q]原 = 0.1101,余数[R]原 = 0.0001。 (4) 补码表示补码定义为: 整数: [X]补=X (0≤X<2^n) [x]补=2^(n+1)+X (-2^n<X≤0 mod 2^(n+1)(意味相对与2^(n+1)做补)) 小数: [X]补=X (0≤X<1) [x]补=2+X (-1<X≤0 mod 2(意味相对与2做补)) 例如:真值X=+1001,[X]补=01001;真值X=-1001,[X]补=100000+(-1001)=100000-1001=10111;真值X=-0.1001,[X]补=2+(-0.1001)=10-0.1001=1.0111。 补码的性质: 1. 机器数和真值的关系为: [X]补=2*符号位+X 2. [X]补和真值的关系:X=[X]补 - 2*X0=X0.X1X2...Xn - 2*X0=-X0 + 0.X1X2...Xn 3. 0有唯一的编码。 4. 两数补码加法,把符号位和数值位等同处理,结果的符号位与数值位都正确。 5. 补码数的算数移位 把[X]补的符号位和数值位一起右移一位并保持原符号位的值不变,可用来实现除法功能(除以2)。 变形补码,又称模4补码,把普通补码由模2改为模4,其中双符号位00代表正,11代表负,01上溢,10下溢。 (5) 反码表示反码是用机器数的最高位代表符号,数值位是对负数各位取反的表示方法,定义为: 整数: [X]反=X (0≤X<2^n) [X]反=(2^(n+1)-1)+X (-2^n<X≤0 mod (2^(n+1)-1)) 小数: [X]反=X (0≤X<1) [X]反=(2-2^(-n))+X (-1<X≤0 mod (2-2^(-n))) 例如:真值X=+1001,[X]反=01001;真值X=-1001,[X]反=10110;真值X=-0.1001,[X]反=1.0110。 反码的性质: 0有2个编码。 现在计算机中,较少使用反码。 (6) 移码移码定位为: [X]移=2^n+X (-2^(-n)≤X<2^n) 当真值用补码表示时,由于符号位和数值部分一起编码,与习惯上的表示法不同,因此人们很难从补码的形式上直接判断其真值的大小。 十进制数X=31,对应的二进制数为+11111,则[X]补=011111;十进制数X=-31,对应的二进制数为-11111,则[X]补=100001,看上去好像100001>011111,其实正好相反。如果我们对每个真值加上一个2^n,X=11111加上2^5可得11111+100000=111111;X=-11111加上2^5可得-11111+100000=000001,这样就可以直接通过二进制代码比较大小。 移码的性质: 1. 最高位为符号位。 2. 0有唯一编码。 3. 保持了数据原有的大小顺序。 4. 移码只用于浮点数的阶码部分,故只用于表示整数。 定点数与浮点数的比较数值的表示范围 :定点表示法所能表示的数值范围将远远大于浮点表示法 。 精度 :对于字长相同的定点数与浮点数来说,定点数虽然扩大了数的表示范围,但这是以降低精度为代价的,也就是数轴上各点的排列更稀疏了 。 数的运算 :浮点运算要比定点运算复杂 。 溢出处理 :定点运算时,当运算结果超出数的表示范围,就发生溢出;而在浮点运算时,运算结果超出尾数的表示范围却并不一定溢出,只有当阶码也超出所能表示的范围时,才发生溢出。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。