Sn=(a1+an)n/2
Sn=na1+n(n-1)d/2; (d为公差)
Sn=An2+Bn; A=d/2,B=a1-(d/2)
和为 Sn
首项 a1
末项 an
公差d
项数n
首项=2×和÷项数-末项
末项=2×和÷项数-首项
末项=首项+(项数-1)×公差
项数=(末项-首项)(除以)/ 公差+1
公差=如:1+3+5+7+……99 公差就是3-1
若 m、n、p、q∈N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq
注意:上述公式中an表示等差数列的第n项。