词条 | 自助法及其应用 |
释义 | 图书信息书 名:自助法及其应用 作 者:(瑞士)戴维森 出版社: 世界图书出版公司 出版时间: 2010-4-1 ISBN: 9787510005510 开本: 16开 定价: 89.00元 内容简介This series of high quality upper-division textbooks and expository monographs covers all areas of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory,operations research, mathematical programming, and optimzation. The books contain clear presentations of new developments in the field and also of the state of the art in classical methods. While emphasizing rigorous treatment of theoretical methods, the books contain important applications and discussionsof new techniques made possible be advances in computational methods. 图书目录Preface 1 Introduction 2 The Basic Bootstraps 2.1 Introduction 2.2 Parametric Simulation 2.3 Nonparametric Simulation 2.4 Simple Confidence Intervals 2.5 Reducing Error 2.6 Statistical Issues 2.7 Nonparametric Approximations for Variance and Bias 2.8 Subsampling Methods 2.9 Bibliographic Notes 2.10 Problems 2.11 Practicals Further Ideas 3.1 Introduction 3.2 Several Samples 3.3 Semiparametric Models 3.4 Smooth Estimates of F 3.5 Censoring 3.6 Missing Data 3.7 Finite Population Sampling 3.8 Hierarchical Data 3.9 Bootstrapping the Bootstrap 3.10 Bootstrap Diagnostics 3.11 Choice of Estimator from the Data 3.12 Bibliographic Notes 3.13 Problems 3.14 Practicals 4 Tests 4.1 Introduction 4.2 Resampling for Parametric Tests 4.3 Nonparametric Permutation Tests 4.4 Nonparametric Bootstrap Tests 4.5 Adjusted P-values 4.6 Estimating Properties of Tests 4.7 Bibliographic Notes 4.8 Problems 4.9 Practicals 5 Confidence Intervals 5.1 Introduction 5.2 Basic Confidence Limit Methods 5.3 Percentile Methods 5.4 Theoretical Comparison of Methods 5.5 Inversion of Significance Tests 5.6 Double Bootstrap Methods 5.7 Empirical Comparison of Bootstrap Methods 5.8 Multiparameter Methods 5.9 Conditional Confidence Regions 5.10 Prediction 5.11 Bibliographic Notes 5.12 Problems 5.13 Practicals 6 Linear Regression 6.1 introduction 6.2 Least Squares Linear Regression 6.3 Multiple Linear Regression 6.4 Aggregate Prediction Error and Variable Selection 6.5 Robust Regression 6.6 Bibliographic Notes 6.7 Problems 6.8 Practicals 7 Farther Topics in Regression 7.1 Introduction 7.2 Generalized Linear Models 7.3 Survival Data 7.4 Other Nonlinear Models 7.5 Misclassification Error 7.6 Nonparametric Regression 7.7 Bibliographic Notes 7.8 Problems 7.9 Practicals 8 Complex Dependence 8.1 Introduction 8.2 Time Series 8.3 Point Processes 8.4 Bibliographic Notes 8.5 Problems 8.6 Practicals 9 Improved Calculation 9.1 Introduction 9.2 Balanced Bootstraps 9.3 Control Methods 9.4 Importance Resampling 9.5 Saddlepoint Approximation 9.6 Bibliographic Notes 9.7 Problems 9.8 Practicals 10 Semiparametric Likelihood Inference 10.1 Likelihood 10.2 Multinomial-Based Likelihoods 10.3 Bootstrap Likelihood 10.4 Likelihood Based on Confidence Sets 10.5 Bayesian Bootstraps 10.6 Bibliographic Notes 10.7 Problems 10.8 Practicala 11 Computer Implementation 11.1 Introduction 11.2 Basic Bootstraps 11.3 Further Ideas 11.4 Tests 11.5 Confidence Intervals 11.6 Linear Regression 11.7 Further Topics in Regression 11.8 Time Series 11.9 Improved Simulation 11.10 Semiparametric Likelihoods Appendix A. Cumulant Calculations Bibliography Name Index Example index Subject index |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。