词条 | 资料仓储 |
释义 | 简介数据仓库是一种资讯系统的资料储存理论,此理论强调利用某些特殊资料储存方式,让所包含的资料,特别有利于分析处理,以产生有价值的资讯并依此作决策。 利用数据仓库方式所存放的资料,具有一但存入,便不随时间而更动的特性,同时存入的资料必定包含时间属性,通常一个数据仓库皆会含有大量的历史性资料,并利用特定分析方式,自其中发掘出特定资讯。 数据仓库的特性主题导向(Subject-Oriented) 有别于一般OLTP系统,数据仓库的资料模型设计,着重将资料按其意义归类至相同的主题区(subject area),因此称为主题导向。举例如Party、Arrangement、Event、Product等。 集成性(Integrated) 资料来自企业各OLTP系统,在数据仓库中是集成过且一致的。 时间差异性(Time-Variant) 资料的变动,在数据仓库中是能够被纪录以及追踪变化的,有助于能反映出能随着时间变化的资料轨迹。 不变动性(Nonvolatile) 资料一旦确认写入后是不会被取代或删除的,即使资料是错误的亦同。(i.e.错误的后续修正,便可因上述时间差异性的特性而被追踪) ODS、数据仓库和资料超市之异同Operational data store(ODS)、数据仓库和资料超市三者相同之处在于均不属于任一OLTP系统,并且都是以资料导向的设计而非流程(process)导向。 相异之处在于,ODS的特性较着重于战术性查询,变动性大。数据仓库通常为企业层级,用来解答即兴式、临时性的问题。而资料超市则较偏向解决特定单位或部门的问题,部分采用维度模型(dimensional model)。 数据挖掘、OLAP和数据仓库数据仓库可以作为数据挖掘和OLAP等分析工具的资料来源,由于存放于数据仓库中的资料,必需经过筛选与转换,因此可以避免分析工具使用错误的资料,而得到不正确的分析结果。 数据挖掘和OLAP同为分析工具,其差别在于OLAP提供用户一便利的多维度观点和方法,以有效率的对资料进行复杂的查询动作,其预设查询条件由用户预先设定,而数据挖掘,则能由资讯系统主动发掘资料来源中,未曾被查觉的隐藏资讯,和透过用户的认知以产生知识。 数据挖掘(Data Mining)技术是经由自动或半自动的方法探勘及分析大量的资料,以创建有效的模型及规则,而企业透过数据挖掘更了解他们的客户,进而改进他们的行销、业务及客服的运作。 数据挖掘是数据仓库的一种重要运用。基本上,它是用来将你的资料中隐藏的资讯挖掘出来,所以 Data Mining 其实是所谓的 Knowledge Discovery 的一部份,Data Mining 使用了许多统计分析与 Modeling 的方法,到资料中寻找有用的特征(Patterns)以及关连性(Relationships)。 Knowledge Discovery 的过程对 Data Mining 的应用成功与否有重要的影响,只有它才能确保 Data Mining 能获得有意义的结果。 |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。