词条 | 应用随机过程:概率模型导论 |
释义 | 图书信息出版社: 人民邮电出版社; 第1版 (2011年2月1日) 外文书名: Introduction to Probability Models, Tenth Edition 丛书名: 图灵原版数学·统计学系列 平装: 784页 正文语种: 英语 开本: 16 ISBN: 9787115247070 条形码: 9787115247070 尺寸: 23.6 x 16.6 x 4.2 cm 重量: 1.1 Kg 作者简介作者:(美国)罗斯(Sheldon M.Ross) Sheldon M.Ross,国际知名概率与统计学家,南加州大学工业工程与运筹系系主任。1968年博士毕业于斯坦福大学统计系,曾在加州大学伯克利分校任教多年。研究领域包括:随机模型、仿真模拟、统计分析、金融数学等。Ross教授著述颇丰,他的多种畅销数学和统计教材均产生了世界性的影响,如A First Course in Probability(《概率论基础教程》)和Simulation(《统计模拟》)等(均由人民邮电出版社引进出版)。 内容简介《应用随机过程:概率模型导论(英文版·第10版)》叙述深入浅出,涉及面广。主要内容有随机变量、条件概率及条件期望、离散及连续马尔可夫链、指数分布、泊松过程、布朗运动及平稳过程、更新理论及排队论等;也包括了随机过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关随机模拟的内容,给随机系统运行的模拟计算提供了有力的工具。除正文外,《应用随机过程——概率模型导论(第10版:英文版)》有约700道习题,其中带星号的习题还提供了解答。 《应用随机过程:概率模型导论(英文版·第10版)》可作为概率论与统计、计算机科学、保险学、物理学、社会科学、生命科学、管理科学与工程学等专业的随机过程基础课教材。 媒体评论“本书的一大特色是实例丰富,内容涉及多个学科,尤其是精算学……相信任何有上进心的读者都会对此爱不释手。” ——Jean LeMaire,宾夕法尼亚大学沃顿商学院 “书中的例子和习题非常出色,作者不仅提供了非常基本的例子,以阐述基础概念和公式,还从尽可能多的学科中提炼出许多较高级的实例,极具参考价值。” ——Matt Carlton,加州州立理工大学(Cal Poly) 目录1 introduction to probability theory 1 1.1 introduction 1 1.2 sample space and events 1 1.3 probabilities defined on events 4 1.4 conditional probabilities 7 1.5 independent events 10 1.6 bayes' formula 12 exercises 15 references 20 2 random variables 21 2.1 random variables 21 2.2 discrete random variables 25 2.2.1 the bernoulli random variable 26 2.2.2 the binomial random variable 27 2.2.3 the geometric random variable 29 2.2.4 the poisson random variable 30 2.3 continuous random variables 31 2.3.1 the uniform random variable 32 2.3.2 exponential random variables 34 .2.3.3 gamma random variables 34 2.3.4 normal random variables 34 2.4 expectation of a random variable 36 2.4.1 the discrete case 36 2.4.2 the continuous case 38 2.4.3 expectation of a function of a random variable 40 2.5 jointly distributed random variables 44 2.5.1 joint distribution functions 44 2.5.2 independent random variables 48 2.5.3 covariance and variance of sums of random variables 50 2.5.4 joint probability distribution of functions of randomvariables 59 2.6 moment generating functions 62 2.6.1 the joint distribution of the sample mean and sample variance from a normal population 71 2.7 the distribution of the number of events that occur 74 2.8 limit theorems 77 2.9 stochastic processes 84 exercises 86 references 95 3 conditional probability and conditional expectation 97 3.1 introduction 97 3.2 the discrete case 97 3.3 the continuous case 102 3.4 computing expectations by conditioning 106 3.4.1 computing variances by conditioning 117 3.5 computing probabilities by conditioning 122 3.6 some applications 140 3.6.1 a list model 140 3.6.2 a random graph 141 3.6.3 uniform priors, polya's urn model, and bose-einstein statistics 149 3.6.4 mean time for patterns 153 3.6.5 the k-record values of discrete random variables 157 3.6.6 left skip free random walks 160 3.7 an identity for compound random variables 166 3.7.1 poisson compounding distribution 169 3.7.2 binomial compounding distribution 171 3.7.3 a compounding distribution related to the negative binomial 172 exercises 173 4 markov chains 191 4.1 introduction 191 4.2 chapman-kolmogorov equations 195 4.3 classification of states 204 4.4 limiting probabilities 214 4.5 some applications 230 4.5.1 the gambler's ruin problem 230 4.5.2 a model for algorithmic efficiency 234 4.5.3 using a random walk to analyze a probabilistic algorithm for the satisfiability problem 237 4.6 mean time spent in transient states 243 4.7 branching processes 245 4.8 time reversible markov chains 249 4.9 markov chain monte carlo methods 260 4.10 markov decision processes 265 4.11 hidden markov chains 269 4.11.1 predicting the states 273 exercises 275 references 290 5 the exponential distribution and the poisson process 291 5.1 introduction 291 5.2 the exponential distribution 292 5.2.1 definition 292 5.2.2 properties of the exponential distribution 294 5.2.3 further properties of the exponential distribution 301 5.2.4 convolutions of exponential random variables 308 5.3 the poisson process 312 5.3.1 counting processes 312 5.3.2 definition of the poisson process 313 5.3.3 interarrival and waiting time distributions 316 5.3.4 further properties of poisson processes 319 5.3.5 conditional distribution of the arrival times 325 5.3.6 estimating software reliability 336 5.4 generalizations of the poisson process 339 5.4.1 nonhomogeneous poisson process 339 5.4.2 compound poisson process 346 5.4.3 conditional or mixed poisson processes 351 exercises 354 references 370 6 continuous-time markov chains 371 6.1 introduction 371 6.2 continuous-time markov chains 372 6.3 birth and death processes 374 6.4 the transition probability function pij (t) 381 6.5 limiting probabilities 390 6.6 time reversibility 397 6.7 uniformization 406 6.8 computing the transition probabilities 409 exercises 412 references 419 7 renewal theory and its applications 421 7.1 introduction 421 7.2 distribution of n(t) 423 7.3 limit theorems and their applications 427 7.4 renewal reward processes 439 7.5 regenerative processes 447 7.5.1 alternating renewal processes 450 7.6 semi-markov processes 457 7.7 the inspection paradox 460 7.8 computing the renewal function 463 7.9 applications to patterns 466 7.9.1 patterns of discrete random variables 467 7.9.2 the expected time to a maximal run of distinct values 474 7.9.3 increasing runs of continuous random variables 476 7.10 the insurance ruin problem 478 exercises 484 references 495 8 queueing theory 497 8.1 introduction 497 8.2 preliminaries 498 8.2.1 cost equations 499 8.2.2 steady-state probabilities 500 8.3 exponential models 502 8.3.1 a single-server exponential queueing system 502 8.3.2 a single-server exponential queueing system having finite capacity 511 8.3.3 birth and death queueing models 517 8.3.4 a shoe shine shop 522 8.3.5 a queueing system with bulk service 524 8.4 network of queues 527 8.4.1 open systems 527 8.4.2 closed systems 532 8.5 the system m/g/1 538 8.5.1 preliminaries: work and another cost identity 538 8.5.2 application of work to m/g/1 539 8.5.3 busy periods 540 8.6 variations on the m/g/1 541 8.6.1 the m/g/1 with random-sized batch arrivals 541 8.6.2 priority queues 543 8.6.3 an m/g/1 optimization example 546 8.6.4 the m/g/1 queue with server breakdown 550 8.7 the model g/m/1 553 8.7.1 the g/m/1 busy and idle periods 558 8.8 a finite source model 559 8.9 multiserver queues 562 8.9.1 erlang's loss system 563 8.9.2 the m/m/k queue 564 8.9.3 the g/m/k queue 565 8.9.4 the m/g/k queue 567 exercises 568 references 578 9 reliability theory 579 9.1 introduction 579 9.2 structure functions 580 9.2.1 minimal path and minimal cut sets 582 9.3 reliability of systems of independent components 586 9.4 bounds on the reliability function 590 9.4.1 method of inclusion and exclusion 591 9.4.2 second method for obtaining bounds on r(p) 600 9.5 system life as a function of component lives 602 9.6 expected system lifetime 610 9.6.1 an upper bound on the expected life of a parallel system 614 9.7 systems with repair 616 9.7.1 a series model with suspended animation 620 exercises 623 references 629 10 brownian motion and stationary processes 631 10.1 brownian motion 631 10.2 hitting times, maximum variable, and the gambler's ruin problem 635 10.3 variations on brownian motion 636 10.3.1 brownian motion with drift 636 10.3.2 geometric brownian motion 636 10.4 pricing stock options 638 10.4.1 an example in options pricing 638 10.4.2 the arbitrage theorem 640 10.4.3 the black-scholes option pricing formula 644 10.5 white noise 649 10.6 gaussian processes 651 10.7 stationary and weakly stationary processes 654 10.8 harmonic analysis of weakly stationary processes 659 exercises 661 references 665 11 simulation 667 11.1 introduction 667 11.2 general techniques for simulating continuous random variables 672 11.2.1 the inverse transformation method 672 11.2.2 the rejection method 673 11.2.3 the hazard rate method 677 11.3 special techniques for simulating continuous random variables 680 11.3.1 the normal distribution 680 11.3.2 the gamma distribution 684 11.3.3 the chi-squared distribution 684 11.3.4 the beta (n, m) distribution 685 11.3.5 the exponential distribution-the von neumann algorithm 686 11.4 simulating from discrete distributions 688 11.4.1 the alias method 691 11.5 stochastic processes 696 11.5.1 simulating a nonhomogeneous poisson process 697 11.5.2 simulating a two-dimensional poisson process 703 11.6 variance reduction techniques 706 11.6.1 use of antithetic variables 707 11.6.2 variance reduction by conditioning 710 11.6.3 control variates 715 11.6.4 importance sampling 717 11.7 determining the number of runs 722 11.8 generating from the stationary distribution of a markov chain 723 11.8.1 coupling from the past 723 11.8.2 another approach 725 exercises 726 references 734 appendix: solutions to starred exercises 735 index 775 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。