词条 | 大规模并行处理器程序设计 |
释义 | 图书信息大规模并行处理器程序设计作 者: (美)柯克 等著 出 版 社: 清华大学出版社 出版时间: 2010-7-1 开 本: 16开 I S B N : 9787302229735 所属分类: 图书 >> 计算机/网络 >> 程序设计 >> 其他 定价:¥36.00 内容简介本书介绍了并行程序设计与GPU体系结构的基本概念,并详细探讨了用于构建并行程序的各种技术,用案例演示了并行程序设计的整个开发过程,即从并行计算的思想开始,直到最终实现实际且高效的并行程序。 本书特点 介绍了并行计算的思想,使得读者可以把这种问题的思考方式渗透到高性能并行计算中去。 介绍了CUDA的使用,CUDA是NVIDIA公司专门为大规模并行环境创建的一种软件开发工具。 介绍如何使用CUDA编程模式和OpenCL来获得高性能和高可靠性。 目录Preface Acknowledgments Dedication CHAPTER 1 INTRODUCTION 1.1 GPUs as Parallel Computers 1.2 Architecture of a Modern GPU 1.3 Why More Speed or Parallelism? 1.4 Parallel Programming Languages and Models 1.5 Overarching Goals 1.6 Organization of the Book CHAPTER 2 HISTORY OF GPU COMPUTING 2.1 Evolution of Graphics pipelines 2.1.1 The Era of Fixed-Function Graphics Pipelines 2.1.2 Evolution of Programmable Real-Time Graphics 2.1.3 Unified Graphics and Computing Processors 2.1.4 GPGPU: An Intermediate Step 2.2 GPU Computing 2.2.1 Scalable GPUs 2.2.2 Recent Developments 2.3 Future Trends CHAPTER 3 INTRODUCTION TO CUDA 3.1 Data Parallelism 3.2 CUDA Program Structure 3.3 A Matrix-Matrix Multiplication Example 3.4 Device Memories and Data Transfer 3.5 Kernel Functions and Threading 3.6 Summary 3.6.1 Function declarations 3.6.2 Kernel launch 3.6.3 Predefined variables 3.6.4 Runtime APl CHAPTER 4 CUDA THREADS 4.1 CUDA Thread Organization 4.2 Using b]ockldx and threadIdx 4.3 Synchronization and Transparent Scalability 4.4 Thread Assignment 4.5 Thread Scheduling and Latency Tolerance 4.6 Summary 4.7 Exercises CHAPTER 5 CUDATM MEMORIES 5.1 Importance of Memory Access Efficiency 5.2 CUDA Device Memory Types 5.3 A Strategy for Reducing Global Memory Traffic 5.4 Memory as a Limiting Factor to Parallelism 5.5 Summary 5.6 Exercises CHAPTER 6 PERFORMANCE CONSIDERATIONS 6.1 More on Thread Execution 6.2 Global Memory Bandwidth 6.3 Dynamic Partitioning of SM Resources 6.4 Data Prefetching 6.5 Instruction Mix 6.6 Thread Granularity 6.7 Measured Performance and Summary 6.8 Exercises CHAPTER 7 FLOATING POINT CONSIDERATIONS 7.1 Floating-Point Format 7.1.1 Normalized Representation of M 7.1.2 Excess Encoding of E 7.2 Representable Numbers 7.3 Special Bit Patterns and Precision 7.4 Arithmetic Accuracy and Rounding 7.5 Algorithm Considerations 7.6 Summary 7.7 Exercises CHAPTER 8 APPLICATION CASE STUDY: ADVANCED MRI RECONSTRUCTION 8.1 Application Background 8.2 Iterative Reconstruction 8.3 Computing FHd Step 1. Determine the Kernel Parallelism Structure Step 2. Getting Around the Memory Bandwidth Limitation. Step 3. Using Hardware Trigonometry Functions Step 4. Experimental Performance Tuning 8.4 Final Evaluation 8.5 Exercises CHAPTER 9 APPLICATION CASE STUDY: MOLECULAR VISUALIZATION AND ANALYSIS CHAPTER 10 PARALLEL PROGRAMMING AND COMPUTATIONAL THINKING CHAPTER 11 A BRIEF INTRODUCTION TO OPENCLTM CHAPTER 12 CONCLUSION AND'FuTuRE OUTLOOK APPENDIX A MATRIX MULTIPLICATION HOST-ONLY VERSION SOURCE CODE APPENDIX B GPU COMPUTE CAPABILITIES Index |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。