词条 | 不动点 |
释义 | 不动点,是一个函数术语,在数学中是指“被这个函数映射到其自身一个点”。 举例取一个浅盒和一张纸,纸恰好盖住盒内的底面。可想而知此时纸上的每个点与正在它下面的盒底上的那些点配成对。把这张纸拿起来,随机地揉成一个小球,再把小球扔进盒里。拓扑学家已经证明,不管小球是怎样揉成的,也不管它落在盒底的什么地方,在揉成小球的纸上至少有一个这样的点,它恰好处在它盒底原来配对点的正上方。 通过具体找到这个点,就能说明这个问题了。 纸被揉成球以后,看它现在投到纸盒底部的影子。纸盒底部的影子区域肯定比纸盒底要小。那么,就取【纸盒底部的在影子内的那个部分】,它肯定对应于纸团里面的某一小团部分。(因为整个底板对应于整个纸团,那么地板的一部分就肯定对应于一部分纸团) 假如去掉纸团的其他部分,那一小团部分同样可以在纸盒底面投影,而且投影肯定比刚才的大投影小,而且在它之内。(因为它是在整个纸团之内)。那么,取这一小片投影(注意这片影子肯定是连续的不会断开,因为纸没有撕裂),当它再往纸团里对应的时候,肯定对应于其中更小的一团。我们再次把多余的纸去掉。 就是说: 整个纸盒对应于纸团 纸盒【在纸团投影内的部分】对应于纸团内的一小块 纸盒【一小块的投影的部分】对应于刚才那一小块内的更小一块 纸盒【更小块投影的部分】对应于更小块中的更更小一块 ………………………… 不断地去掉纸无限次,最后纸团只剩下了一个点,它的投影就对应于纸盒的一个点。 函数不动点例如,定义在实数上的函数f, f(x) = x^2 - 3x + 4, 则2是函数f的一个不动点,因为f(2) = 2。 也不是每一个函数都具有不动点。例如f(x) = x + 1就没有不动点。因为对于任意的实数,x永远不会等于x + 1。用图像的话来说,不动点意味着点(x,f(x))在直线y = x上,或者换句话说,函数f(x)的图像与那根直线有共点。这个例子的情况是,这个函数的图像与那根直线是一对平行线。 不动点原理不动点原理是数学上一个重要的原理,也叫压缩映像原理或巴拿赫(Banach)不动点定理,完整的表达:完备的度量空间上,到自身的一个压缩映射存在唯一的不动点。用初等数学可以这么理解:连续映射f的定义域包含值域,则存在一个x使得f(x)=x 不动点的概念可以推广到一般的拓扑空间上。 假设X是拓扑空间, f:X→X是一个连续映射, 且存在x∈X, 使得f(x)=x, 就称x是不动点。 不动点应用1 利用f(x)的不动点解方程(牛顿切线法) 2 利用f(x)的不动点求函数或多项式的解析式 3 利用f(x)的不动点讨论n-周期点问题 4 求解数列问题(求解一阶递归数列的通项公式) 5 求解一阶递归数列的极限 这是利用不动点开立方(牛顿切线法)的例子 开方: 公式:X(n+1)=Xn+(A/Xn^2-Xn)1/3设A=5,开3次方 5介于1^3至2^3之间(1的3次方=1,2的3次方=8) X_0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0都可以。例如我们取2.0.按照公式: 第一步:X1={2.0+[5/(2.0^2-2.0]1/3=1.7.}。即5/2×2=1.25,1.25-2=-0.75,0.75×1/3=0.25,输入值大于输出值,负反馈 2-0.25=1.75,取2位数值,即1.7。 第二步:X2={1.7+[5/(1.7^2-1.7]1/3=1.71}.。 即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,输入值小于输出值正反馈 1.7+0.01=1.71。取3位数,比前面多取一位数。 第三步:X3={1.71+[5/(1.71^2-1.71]1/3=1.709}输入值大于输出值,负反馈 第四步:X4={1.709+[5/(1.709^2-1.709]1/3=1.7099}.输入值小于输出值正反馈 这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值偏小,输出值自动转大。X_4=1.7099. 当然也可以取1.1,1.2,1.3,。。。1.8,1.9中的任何一个。 不动点法求数列通项对于某些特定形式的数列递推式可用不动点法来求 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。