词条 | 波罗蜜定理 |
释义 | 托勒密(Ptolemy)定理指出,圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。 托勒密定理的推论:任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。 证明如下:在四边形ABCD中,连接AC,作角ABE=角ACD,角BAE=角CAD 则三角形ABE和三角形ACD相似 所以 BE/CD=AB/AC,即BE*AC=AB*CD (1) 又有比例式AB/AC=AE/AD 而角BAC=角DAE 所以三角形ABC和三角形AED相似. BC/ED=AC/AD即ED*AC=BC*AD (2) (1)+(2),得 AC(BE+ED)=AB*CE+AD*BC 又因为BE+ED>=BD 所以命题得证 托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆 推广及证明 * 托勒密不等式:四边形的任两组对边乘积不小于另外一组对边的乘积,取等号当且仅当共圆或共线。 o 简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,得不等式,分析等号成立的条件。 o 四点不限于同一平面。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。