词条 | 概型的几何 |
释义 | 图书信息出版社: 世界图书出版公司; 第1版 (2010年1月1日) 外文书名: The Geometry of Schemes 平装: 294页 正文语种: 英语 开本: 24 ISBN: 7510004748, 9787510004742 条形码: 9787510004742 尺寸: 22.2 x 14.8 x 1.4 cm 重量: 399 g 内容简介《概型的几何(英文版)》内容简介:概型理论是代数几何的基础,在代数几何的经典领域不变理论和曲线模中有了较好的发展。将代数数论和代数几何有机的结合起来,实现了早期数论学者们的愿望。这种结合使得数论中的一些主要猜测得以证明。 《概型的几何(英文版)》旨在建立起经典代数几何基本教程和概型理论之间的桥梁。例子讲解详实,努力挖掘定义背后的深层次东西。练习加深读者对内容的理解。学习《概型的几何(英文版)》的起点低,了解交换代数和代数变量的基本知识即可。《概型的几何(英文版)》揭示了概型和其他几何观点,如流形理论的联系。了解这些观点对学习《概型的几何(英文版)》是相当有益的,虽然不是必要。目次:基本定义;例子;射影概型;经典结构;局部结构;概型和函子。 目录I Basic Definitions I.1 Affine Schemes I.1.1 Schemes as Sets I.1.2 Schemes as Topological Spaces I.1.3 An Interlude on Sheaf Theory References for the Theory of Sheaves I.1.4 Schemes as Schemes (Structure Sheaves) I.2 Schemes in General I.2.1 Subschemes I.2.2 The Local Ring at a Point I.2.3 Morphisms I.2.4 The Gluing Construction Projective Space I.3 Relative Schemes I.3.1 Fibered Products I.3.2 The Category of S-Schemes I.3.3 Global Spec I.4 The Functor of Points II Examples II.1 Reduced Schemes over Algebraically Closed Fields II. 1.1 Affine Spaces II.1.2 Local Schemes II.2 Reduced Schemes over Non-Algebraically Closed Fields II.3 Nonreduced Schemes II.3.1 Double Points II.3.2 Multiple Points Degree and Multiplicity II.3.3 Embedded Points Primary Decomposition II.3.4 Flat Families of Schemes Limits Examples Flatness II.3.5 Multiple Lines II.4 Arithmetic Schemes II.4.1 Spec Z II.4.2 Spec of the Ring of Integers in a Number Field II.4.3 Affine Spaces over Spec Z II.4.4 A Conic over Spec Z II.4.5 Double Points in Al III Projective Schemes III.1 Attributes of Morphisms III.1.1 Finiteness Conditions III.1.2 Properness and Separation III.2 Proj of a Graded Ring III.2.1 The Construction of Proj S III.2.2 Closed Subschemes of Proj R III.2.3 Global Proj Proj of a Sheaf of Graded 0x-Algebras The Projectivization P(ε) of a Coherent Sheaf ε III.2.4 Tangent Spaces and Tangent Cones Affine and Projective Tangent Spaces Tangent Cones III.2.5 Morphisms to Projective Space III.2.6 Graded Modules and Sheaves III.2.7 Grassmannians III.2.8 Universal Hypersurfaces III.3 Invariants of Projective Schemes III.3.1 Hilbert Functions and Hilbert Polynomials 1II.3.2 Flatness Il: Families of Projective Schemes III.3.3 Free Resolutions III.3.4 Examples Points in the Plane Examples: Double Lines in General and in p3 III.3.5 BEzout's Theorem Multiplicity of Intersections III.3.6 Hilbert Series IV Classical Constructions IV.1 Flexes of Plane Curves IV.I.1 Definitions IV.1.2 Flexes on Singular Curves IV.1.3 Curves with Multiple Components IV.2 Blow-ups IV.2.1 Definitions and Constructions An Example: Blowing up the Plane Definition of Blow-ups in General The Blowup as Proj Blow-ups along Regular Subschemes IV.2.2 Some Classic Blow-Ups IV.2.3 Blow-ups along Nonreduced Schemes Blowing Up a Double Point Blowing Up Multiple Points The j-Function IV.2.4 Blow-ups of Arithmetic Schemes IV.2.5 Project: Quadric and Cubic Surfaces as Blow-ups IV.3 Fano schemes IV.3.1 Definitions IV.3.2 Lines on Quadrics Lines on a Smooth Quadric over an Algebraically Closed Field Lines on a Quadric Cone A Quadric Degenerating to Two Planes More Examples IV.3.3 Lines on Cubic Surfaces IV.4 Forms V Local Constructions V.1 Images V.I.1 The Image of a Morphism of Schemes V.1.2 Universal Formulas V.1.3 Fitting Ideals and Fitting Images Fitting Ideals Fitting Images V.2 Resultants V.2:l Definition of the Resultant V.2.2 Sylvester's Determinant V.3 Singular Schemes and Discriminants V.3.1 Definitions V.3.2 Discriminants V.3.3 Examples V.4 Dual Curves V.4.1 Definitions V.4.2 Duals of Singular Curves V.4.3 Curves with Multiple Components V.5 Double Point Loci VI Schemes and Functors VI.1 The Functor of Points VI.I.1 Open and Closed Subfunctors VI.1.2 K-Rational Points VI.1.3 Tangent Spaces to a Functor VI.1.4 Group Schemes VI.2 Characterization of a Space by its ~nctor of Points VI.2.1 Characterization of Schemes among Functors VI.2.2 Parameter Spaces The Hilbert Scheme Examples of Hilbert Schemes Variations on the Hilbert Scheme Construction. VI.2.3 Tangent Spaces to Schemes in Terms of Their Func tors of Points Tangent Spaces to Hilbert Schemes Tangent Spaces to Fano Schemes VI.2.4 Moduli Spaces References Index |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。