词条 | 大规模多媒体信息管理与检索基础:模拟人类感知数学方法 |
释义 | 图书信息书 名: 大规模多媒体信息管理与检索基础:模拟人类感知数学方法 作 者:张智威 出版社: 清华大学出版社 出版时间: 2011年5月1日 ISBN: 9787302249764 开本: 16开 定价: 59.00元 内容简介大规模多媒体信息管理与检索面临着两大类艰巨的技术挑战。首先,这一工程问题的研究在本质上是多领域、跨学科的,涉及信号处理、计算机视觉、数据库、机器学习、神经科学和认知心理学;其次,一个有效的解决方案必须能解决高维数据和网络规模数据的可扩展性问题。这是作者在美国加州大学从事多年的教学科研及在google公司工作多年的基础上编写的。《大规模多媒体信息管理与检索基础:模拟人类感知数学方法》适合多媒体、计算机视觉、机器学习、大规模数据处理等领域的研发人员阅读,也可作为高等院校计算机专业本科生及研究生的教材或教学参考书。 作者简介张智威,Dr. Edward Y. Chang was a professor at the Department of Electrical &Computer Engineering, University of California at Santa Barbara, before hejoined Google as a research director in 2006. Dr. Chang received his M.S.degree in Computer Science and Ph.D degree in Electrical Engineering,both from Stanford University. 图书目录1 introduction - key subroutines of multimedia data management 1.1 overview 1.2 feature extraction 1.3 similarity 1.4 learning 1.5 multimodal fusion 1.6 indexing 1.7 scalability 1.8 concluding remarks references 2 perceptual feature extraction 2.1 introduction 2.2 dmd algorithm 2.2.1 model-based pipeline 2.2.2 data-driven pipeline 2.3 experiments 2.3.1 dataset and setup 2.3.2 model-based vs. data-driven 2.3.3 dmd vs. individual models 2.3.4 regularization tuning 2.3.5 tough categories 2.4 related reading 2.5 concluding remarks references 3 query concept learning 3.1 introduction 3.2 support vector machines and version space 3.3 active learning and batch sampling strategies 3.3.1 theoretical foundation 3.3.2 sampling strategies 3.4 concept-dependent learning 3.4.1 concept complexity 3.4.2 limitations of active learning 3.4.3 concept-dependent active learning algorithms 3.5 experiments and discussion 3.5.1 testbed and setup 3.5.2 active vs. passive learning 3.5.3 against traditional relevance feedback schemes 3.5.4 sampling method evaluation 3.5.5 concept-dependent learning 3.5.6 concept diversity evaluation 3.5.7 evaluation summary 3.6 related reading 3.6.1 machine learning 3.6.2 relevance feedback 3.7 relation to other chapters 3.8 concluding remarks references 4 similarity 4.1 introduction 4.2 mining image feature set 4.2.1 image testbed setup 4.2.2 feature extraction 4.2.3 feature selection 4.3 discovering the dynamic partial distance function 4.3.1 minkowski metric and its limitations 4.3.2 dynamic partial distance function 4.3.3 psychological interpretation of dynamic partial distance function 4.4 empirical study 4.4.1 image retrieval 4.4.2 video shot-transition detection 4.4.3 near duplicated articles 4.4.4 weighted dpf vs. weighted euclidean 4.4.5 observations 4.5 related reading 4.6 concluding remarks references 5 formulating distance functions 5.1 introduction 5.2 dfa algorithm 5.2.1 transformation model 5.2.2 distance metric learning 5.3 experimental evaluation 5.3.1 evaluation on contextual information 5.3.2 evaluation on effectiveness 5.3.3 observations 5.4 related reading 5.4.1 metric learning 5.4.2 kernel learning 5.5 concluding remarks references 6 multimodal fusion 6.1 introduction 6.2 related reading 6.2.1 modality identification 6.2.2 modality fusion 6.3 independent modality analysis 6.3.1 pca 6.3.2 ica 6.3.3 img 6.4 super-kernel fusion 6.5 experiments 6.5.1 evaluation of modality analysis 6.5.2 evaluation of multimodal kernel fusion 6.5.3 observations 6.6 concluding remarks references 7 fusing content and context with causality 7.1 introduction 7.2 related reading 7.2.1 photo annotation 7.2.2 probabilistic graphical models 7.3 multimodal metadata 7.3.1 contextual information 7.3.2 perceptual content 7.3.3 semantic ontology 7.4 influence diagrams 7.4.1 structure learning 7.4.2 causal strength 7.4.3 case study 7.4.4 dealing with missing attributes 7.5 experiments 7.5.1 experiment on learning structure 7.5.2 experiment on causal strength inference 7.5.3 experiment on semantic fusion 7.5.4 experiment on missing features 7.6 concluding remarks references 8 combinational collaborative filtering, considering personalizafion 8.1 introduction 8.2 related reading 8.3 ccf: combinational collaborative filtering 8.3.1 c-u and c-d baseline models 8.3.2 ccf model 8.3.3 gibbs & em hybrid training 8.3.4 parallelization 8.3.5 inference 8.4 experiments 8.4.1 gibbs + em vs. em 8.4.2 the orkut dataset 8.4.3 runtime speedup 8.5 concluding remarks references 9 imbalanced data learning 9.1 introduction 9.2 related reading 9.3 kernel boundary alignment 9.3.1 conformally transforming kernel k 9.3.2 modifying kernel matrix k 9.4 experimental results 9.4.1 vector-space evaluation 9.4.2 non-vector-space evaluation 9.5 concluding remarks references 10 psvm: parallelizing support vector machines on distributed computers 10.1 introduction 10.2 interior point method with incomplete cholesky factorization 10.3 psvm algorithm 10.3.1 parallel icf 10.3.2 parallel ipm 10.3.3 computing parameter b and writing back 10.4 experiments 10.4.1 class-prediction accuracy 10.4.2 scalability 10.4.3 overheads 10.5 concluding remarks references 11 approximate high-dimensional indexing with kernel 11.1 introduction 11.2 related reading 11.3 algorithm spheredex 11.3.1 create - building the index 11.3.2 search - querying the index 11.3.3 update - insertion and deletion 11.4 experiments 11.4.1 setup 11.4.2 performance with disk ios 11.4.3 choice of parameter g 11.4.4 impact of insertions 11.4.5 sequential vs. random 11.4.6 percentage of data processed 11.4.7 summary 11.5 concluding remarks 11.5.1 range queries 11.5.2 farthest neighbor queries references 12 speeding up latent dirichlet allocation with parallelization and pipeline strategies 12.1 introduction 12.2 related reading 12.3 ad-lda: approximate distributed lda 12.3.1 parallel gibbs sampling and allreduce 12.3.2 mpi implementation of ad-lda 12.4 plda+ 12.4.1 reduce bottleneck of ad-lda 12.4.2 framework of plda+ 12.4.3 algorithm for pw processors 12.4.4 algorithm for pd processors 12.4.5 straggler handling 12.4.6 parameters and complexity 12.5 experimental results 12.5.1 datasets and experiment environment 12.5.2 perplexity 12.5.3 speedups and scalability 12.6 large-scale applications 12.6.1 mining social-network user latent behavior 12.6.2 question labeling (ql) 12.7 concluding remarks references |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。