词条 | 边界生产函数 |
释义 | 边界生产函数法(frontier production function) 也称潜在产出法(potential output approach ,PO) 索洛残差法和隐性变量法在估算全要素生产率时,都暗含着一个重要的假设即认为经济资源得到充分利用,此时,全要素生产率增长就等于技术进步率。换言之,这两种方法在估算全要素生产率时,都忽略了全要素生产率增长的另一个重要组成部分———能力实现改善( improvement incapacity realization) 即技术效率提升的影响。潜在产出法(potential output approach,PO) 也称边界生产函数法(frontier production function) 正是基于上述考虑提出的,其基本思路是遵循法雷尔(Farrell ,1957) 的思想,将经济增长归为要素投入增长、技术进步和能力实现改善(技术效率提升) 三部分,全要素生产率增长就等于技术进步率与能力实现率改善之和;估算出能力实现率和技术进步率,便给出全要素生产率增长率。潜在产出法可分为两类:一是参数随机边界分析(stochastic frontier analysis,SFA) ,其中较为流行的方法为Hildreth and Houck(1968) 的随机系数面板模(random coefficient panel model) ,这类方法可以很好地处理度量误差,但需要给出生产函数形式和分布的明确假设,对于样本量较少的实证研究而言,存在着较大问题(Gong and Sickles ,1992) 。二是非参数数据包络分析(data envelopmentanalysis,DEA) ,这种方法直接利用线性优化给出边界生产函数与距离函数的估算,无需对生产函数形式和分布做出假设,从而避免了较强的理论约束。但这两类方法只适合于面板数据,并不能单独估算出某一主体的全要素生产率增长,所以本文没有采用这两种方法。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。