请输入您要查询的百科知识:

 

词条 伴随阵
释义

基本概念

伴随阵,又称伴随矩阵。

R是一个交换环,A是一个以R中元素为系数的 n×n 的矩阵。A的伴随矩阵可按如下步骤定义:

定义:A关于第i 行第j 列的余子式(记作Mij)是去掉A的第i行第j列之后得到的(n − 1)×(n − 1)矩阵的行列式。

定义:A关于第i 行第j 列的代数余子式是:Aij 。 定义:A的余子矩阵是一个n×n的矩阵C,使得其第i 行第j 列的元素是A关于第i 行第j 列的代数余子式。 引入以上的概念后,可以定义:矩阵A的伴随矩阵是A的代数余子矩阵的转置矩阵:

也就是说, A的伴随矩阵是一个n×n的矩阵(记作adj(A)),使得其第i 行第j 列的元素是A关于第j 行第i 列的代数余子式:

伴随矩阵的求法:

主对角元素是将原矩阵该元素所在行列去掉再求行列式;

非主对角元素 。是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^(x+y) x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始的.

主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以(-1)^(x+y)=(-1)^(2x)=1,一直是正数,没必要考虑主对角元素的符号问题。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/26 21:25:16