词条 | Peirce定律 |
释义 | 基本介绍逻辑中的Peirce 定律得名于哲学家和逻辑学家查尔斯·桑德斯·皮尔士。它被接受为他的第一个公理化命题逻辑中一个公理。这个公理可以用做排中律的替代者。 在命题演算中,Peirce 定律说的是 ((P→Q)→P)→P。 也就是说,如果你能证明 P 蕴含 Q 强制 P 是真的,则 P 必定是真的。 Peirce 的定律在直觉逻辑或中间逻辑中不成立的。在Curry-Howard同构中,Peirce 定律是一种续体运算。Peirce 定律的证明 在只使用否定和蕴涵运算符的命题演算中,A ∨ B 表示为 (A → B) → B。Peirce 定律等价于 (P → Q) ∨ P 也就是 ¬P ∨ Q ∨ P ,所以它是排中律的推论。 与演绎定理一起使用 Peirce 定律Peirce 定律允许你通过使用演绎定理来增强证明定理的技术。假设给你一组前提 Γ 而你希望从它们演绎出命题 Z。通过 Peirce 定律,你可以向 Γ 增加(没有代价)额外的形如 Z→P 的前提。例如,假设我们给出了 P→Z 和 (P→Q)→Z 并且希望演绎出 Z,那么我们可以使用演绎定理来结论出 (P→Z)→(((P→Q)→Z)→Z) 是定理。接着我们可以增加另一个前提 Z→Q。从它和 P→Z,我们可以得到 P→Q。接着我们应用肯定前件于 (P→Q)→Z 作为它的大前提来得到 Z。运用演绎定理,我们得到 (Z→Q)→Z 从最初的前提得出。接着我们以 ((Z→Q)→Z)→Z 的形式使用 Peirce 定律和肯定前件来从最初的前提推导 Z。我们就完成了最初预期的定理证明。 P→Z 1. 假设 (P→Q)→Z 2. 假设 Z→Q 3. 假设 P 4. 假设 Z 5. 肯定前件使用步骤 4 和 1 Q 6. 肯定前件使用步骤 5 和 3 P→Q 7. 演绎自 4 到 6 Z 8. 肯定前件使用步骤 7 和 2 (Z→Q)→Z 9. 演绎自 3 到 8 ((Z→Q)→Z)→Z 10. Peirce 定律 Z 11. 肯定前件使用步骤 9 到 10 ((P→Q)→Z)→Z 12. 演绎自 2 到 11 (P→Z)→((P→Q)→Z)→Z) 13. 演绎自 1 到 12 QED 历史 Peirce 定律陈述:第五图像(icon)需要排中原理和与它连接的其他命题。最简单的这种公式是: {(x —< y) —< x} —< x。 这是难于自明的。如下看起来它是真的。它只能在最终结论 x 是假、而它的前提 (x —< y) —< x 是真的时候是假的。如果它是真的,要么它的结论 x 是真,这时整个公式将是真的,要么它的前提 x —< y 是假的。但是在最后一种情况下 x —< y 的前提也就是 x 必须是真的。(Peirce, CP 3.384)。 Peirce 接着指出了这个定律的一个直接应用: 从刚才给出的这个公式,我们立即就得到: {(x —< y) —< a} —< x, 这里的 a 在 (x —< y) —< a 意味着从 (x —< y) 能得出所有命题的意义上使用的。通过这种理解,这个公式陈述了排中原理,从否认 x 为假得出 x 为真。(Peirce, CP 3.384)。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。