词条 | johnson cook模型 |
释义 | ohnson-Cook 材料模型及失效模型 JC模型的公式是基于实验得到的。JC模型中,流动应力(flow stress)可以表示为以下形式 σ = [A + Bε^n][1 + Clnε*][1 - T*^m] (1) 式中 σ- effective stress ε- effective plastic strain ε* - normalized effective plastic strain rate (typically normalized to a strain rate of 1.0 s-1) n - work hardening exponent A, B, C, m - constants. T* = (T-298)/(Tmelt-298) (2) Tmelt - melting temperature 由此材料的强度是应变、应变率和温度的函数。JC模型假设材料为各向同性材料。方程(1)中的 A, B, C, n 和 m 来自实验数据,对于大变形问题,可以假设在变形过程中,塑性功的任意百分比在变形材料中产生热量。对于许多材料,90-100%的塑性功作为热量在材料中散失。因此,方程(1)中使用的温度可以根据下面的表达式从温度上升中导出: ΔT =[α∫σ(ε) dε]/ρc (3) 式中 ΔT - temperature increase α - percentage of plastic work transformed to heat c - heat capacity ρ - density JC材料模型的断裂由下面的累积损坏法则导出 D = Σ (Δε/εf) (4) 式中 εf = [D1 + D2exp(D3σ*)][1+D4lnε*][1+D5T*] (5) Δε - increment of effective plastic strain during an increment in loading σ* - mean stress normalized by the effective stress D1, D2, D3, D4, D5 - constants 当D = 1时发生失效。失效应变εf和损伤的累积,是平均应力、应变率和温度的函数。 材料 Ti-6Al-4V Titanium A: 1098 MPa (159.246 ksi) B: 1092 MPa (158.376 ksi) n: 0.93 C:0.014 m:1.1 D1:-0.090 D2:0.270 D3:0.480 D4:0.014 D5:3.870 材料 2024-T3 Aluminum A:369 MPa (53.517 ksi) B:684 MPa (99.202 ksi) n:0.73 C:0.0083 m:1.7 D1:0.112 D2:0.123 D3:1.500 D4:0.007 D5:0.0 数据来源: [1] D. R. Leseur. Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum. Tech. Rep. DOT/FAA/AR-00/25. US department of Transportation. Federal Aviation Administration. September, 2000. [2] G. Kay. Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model. Tech. Rep. DOT/FAA/AR-03/57. US department of Transportation, Federal Aviation Administration, September, 2003. |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。