词条 | CW复形 |
释义 | 一类拓扑空间。重要性在于许多常见的空间属于这一类;另外同伦论的方法对这类空间能较好地发挥。单纯复形(见拓扑学,同调论)是CW复形的特例。粗略地说,CW复形是由一些(有限多个或无穷多个)胞腔从低维到高维逐层堆积而成的空间。同伦论中往往需要在拓扑空间上定义满足某种条件的连续映射。这对非常一般的拓扑空间来说很难着手。但对于CW复形,则可以从低维到高维,在一个一个胞腔上给出定义,即采用“逐层扩张”的方式得到所需要的连续映射。如果扩张到某一层遇到阻碍,就产生阻碍上闭链,阻碍上同调类等等(见同伦论),这样就能利用同调来讨论关于连续映射的扩张或同伦等问题 |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。