词条 | 最小相位系统 |
释义 | 定义minimum phase systems 如果控制系统开环传函的所有极点和零点均位于s左半平面上,则称该系统为最小相位系统。 一个系统被称为最小相位系统,当且仅当这个系统是因果稳定的,有一个有理形式的系统函数,并且存在着一个因果稳定的逆函数。 特点特点1如果两个系统有相同的幅频特性,那么对于大于零的任何频率,最小相位系统的相角总小于非最小相位系统; 特点2最小相位系统的幅频特性和相频特性直接关联,也就是说,一个幅频特性只能有一个相频特性与之对应,一个相频特性只能有一个幅频特性与之对应。对于最小相位系统,只要根据对数幅频曲线就能写出系统的传递函数。 性质性质1如果假设一个最小相位系统有系统函数H(z),那么,它具有下列性质: 1 所有的极点在单位圆内 2 所有的零点在单位圆内 3 H(z)的分子和分母同阶 性质2从最小相位系统的幅频响应,它具有下列性质: 1.一组具有相同幅频响应的因果,稳定的滤波器中,最小相位滤波器对于零相位具有最小的相位偏移。 2.不同的离散时间系统可能具有相同的幅频响应,如果h(n)为相同幅频的离散时间系统的单位抽样响应,单位抽样响应的的能量集中在n为较小值的范围内。一个因果稳定的,并且具有有理形式系统函数的系统一定可以分解成一连串全通系统和最小相位系统。 工程上常用这一性质来消除失真,但是缺点是它消除了幅度失真后会带来相移失真。 从传递函数角度看,如果说一个环节的传递函数的极点和零点的实部全都小于或等于零,则称这个环节是最小相位环节,如果传递函数中具有正实部的零点或极点,或有延迟环节,这个环节就是非最小相位环节。 对于闭环系统,如果它的开环传递函数极点或零点的实部小于或等于零,则称它是最小相位系统,如果开环传递函中有正实部的零点或极点,或有延迟环节,则称系统是非最小相位系统。因为若把延迟环用零点和极点的形式近似 性质3表达时(泰勒级数展开),会发现它具有正实部零点。 最小相位系统具有如下性质: 1 最小相位系统传递函数可由其对应的开环对数频率特性唯一确定;反之亦然. 2 最小相位系统的相频特性可由其对应的开环频率特性唯一确定;反之亦然. 3 在具有相同幅频特性的系统中,最小相位系统的相角范围最小. 4 最小相位系统有一条性质很好理解:其逆系统也是稳定的,因为最小相位系统的逆系统的极点就是原来系统的零点,还是在Z平面的单位圆内,所以仍然是稳定的。 5 最小相位系统的相位延迟最小:这个我的理解是通过S平面来看的,对于系统的相位延迟,假设极点的偏移是W1,W2,W3...零点的偏移是Q1,Q2,Q3;那么总的偏移应该是两类偏移各自相加然后做减法:对于最小相位系统,其零点极点都在S平面的左半平面,最后减法两者抵消,得出来的值(也就是相位的改变)较小,而最大相位系统恰恰相反,极点和零点在不同的半平面,相减得出的值较大,也就是系统的相位变化较大。 似乎这个才应该是最小(最大)相位相位系统的名字的来由。 6 任何非最小相位系统可以表示成 H(z)=Hmin(z)·Hap(z),这个也能明白,Hmin(z)是所有零点在S平面左平面,Hap(z)是在右平面。 判断方法判断系统是否为最小相位系统的简单方法是:如果两个系统的传递函数分子和分母的最高次数都分别是m,n,则频率ω趋于无穷时,两个系统的对数幅频曲线斜率均为-20(n-m)dB/dec但对数相频曲线却不同:最小相位系统趋于-90°(n-m),而非最小相位系统却不这样。 最小相位系统与非最小相位系统的比较举例比较最小相位系统和非最小相位系统。假设有两个系统G1(s)和G2(s),其传递函数见表。 G1(s)为最小相位系统,G2(s)为非最小相位系统,0< Tz< TpoG1(s)和G2(s)的幅频特性相同,但相频特性不同。 G2(s)的一个RHP零点与G1(s)的I-HP零点成镜像,图为最小相位系统G1(s)与非最小相位系统G2(s)的相频特性的比较。由图可知,0< ω< ∞,相位|Φ1(ω)|>|Φ2(ω)|。最小相位系统的相频特性,其相角变化范围是最小的,而非最小相位系统的相位滞后严重。 |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。