词条 | 自由度 |
释义 | 自由度(degree of freedom, df)在数学中能够自由取值的变量个数,如有3个变量x、y、z,但x+y+z=18,因此其自由度等于2。在统计学中,自由度指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本含量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。自由度通常用于抽样分布中。 综述“自由度”(degrees of freedom, df)是在统计学,物理学,工程机械中的基本知识,通常用于抽样分布中。而电子游戏中也有自由度这个概念。 一、统计学和计量经济学统计学上的自由度是指当以样本的统计量来估计总体的参数时, 样本中独立或能自由变化的资料的个数,称为该统计量的自由度。 统计学上的自由度包括两方面的内容: 首先,在估计总体的平均数时,由于样本中的 n 个数都是相互独立的,从其中抽出任何一个数都不影响其他数据,所以其自由度为n。 在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。 例如,有一个有4个数据(n=4)的样本, 其平均值m等于5,即受到m=5的条件限制, 在自由确定4、2、5三个数据后, 第四个数据只能是9, 否则m≠5。因而这里的自由度υ=n-1=4-1=3。推而广之,任何统计量的自由度υ=n-限制条件的个数。 其次,统计模型的自由度等于可自由取值的自变量的个数。如在回归方程中,如果共有p个参数需要估计,则其中包括了p-1个自变量(与截距对应的自变量是常量1)。因此该回归方程的自由度为p-1。 这个解释,如果把“样本”二字换成“总体”二字也说得过去。 在一个包含n个个体的总体中,平均数为m。知道了n-1个个体时,剩下的一个个体不可以随意变化。为什么总体方差计算,是除以n而不是n-1呢?方差是实际值与期望值之差平方的期望值,所以知道总体个数n时方差应除以n,除以n-1时是方差的一个无偏估计。 二、物理学完全确定一个物体在空间位置所需要的独立坐标的数目,叫做这个物体的自由度。力学系统由一组坐标来描述。 据热力学中的能量均分定理,每个自由度的能量相等(当然没考虑量子效应啦),都为Tk/2(振动包括动能和势能,所以振动能量为(Tk/2)*2),单原子分子仅有3个平动自由度,所以为3Tk/2,非刚性双原子分子有3个平动自由度,2个转动自由度,1个振动自由度,所以为(3+2+1*2)Tk/2,非刚性三原子分子有3个平动自由度,3个转动自由度,3个振动自由度所以为(3+3+3*2)Tk/2,刚性分子不用考虑振动,一般非刚性分子有3*n个自由度,3个平动自由度,3个转动自由度,(n为原子个数,n>2),所以有3n-6个振动自由度。不能说每个分子的能量都是iTk/2,这是统计规律。 质点自由度(1)一个质点在空间任意运动,需用三个独立坐标(x,y,z)确定其位置。所以自由质点有三个平动自由度 i = 3。 (2)如果对质点的运动加以限制(约束),自由度将减少。如质点被限制在平面或曲面上运动,则 i= 2;如果质点被限制在直线或平面曲线(不是空间曲线)上运动,则其自由度 i = 1。 刚体自由度一个刚体在空间任意运动时,可分解为质心 O’ 的平动和绕通过质心某直线的定点转动,它既有平动自由度还有转动自由度。确定刚体质心O’的位置,需三个独立坐标(x,y,z)—自由刚体有三个平动自由度 t = 3; 确定刚体通过质心轴的空间方位──三个方位角(α,β,γ)中只有其中两个是独立的──需两个转动自由度;另外还要确定刚体绕通过质心轴转过的角度θ──还需一个转动自由度。这样,确定刚体绕通过质心轴的转动,共有三个转动自由度 r = 3。所以,一个任意运动的刚体,总共有6个自由度,即3个平动自由度和3个转动自由度,即i = t + r = 3 + 3 = 6 分子自由度自由度是物体运动方程中可以写成的独立坐标数,单原子分子有3个自由度,双原子,三原子不考虑振动相当于刚体,分别有5个(3平2转)、6个自由度(3平3转),考虑振动后,双原子加1个,三原子加2个。 (1)单原子分子:如氦He、氖Ne、氩Ar等分子只有一个原子,可看成自由质点,所以有3个平动自由度 i = t = 3。 (2)刚性双原子分子如氢 、氧 、氮 、一氧化碳CO等分子,两个原子间联线距离保持不变。就像两个质点之间由一根质量不计的刚性细杆相连着(如同哑铃),确定其质心O’的空间位置,需3个独立坐标(x,y,z);确定质点联线的空间方位,需两个独立坐标(如α,β),而两质点绕联线的的转动没有意义。所以刚性双原子分子既有3个平动自由度,又有2个转动自由度,总共有5个自由度 i = t + r =3 + 2 = 5。 (3)刚性三原子或多原子分子: 如 H2O 、氨 等,只要各原子不是直线排列的,就可以看成自由刚体,共有6个自由度,i = t + r = 3 + 3 = 6。 (4) 对于非刚性分子,由于在原子之间相互作用力的支配下,分子内部还有原子的振动,因此还应考虑振动自由度(以S 表示)。如非刚性双原子分子,好像两原子之间有一质量不计的细弹簧相连接,则振动自由度 S = 1。 一般在常温下,气体分子都近似看成是刚性分子,振动自由度可以不考虑。 力学系统由一组坐标来描述。比如一个质点的三维空间中的运动,在笛卡尔坐标系中,由x,y,z三个坐标来描述;或者在球坐标系中,由r,θ,φ三个坐标描述。描述系统的坐标可以自由的选取,但独立坐标的个数总是一定的,即系统的自由度。一般的,N个质点组成的力学系统由3N个坐标来描述。但力学系统中常常存在着各种约束,使得这3N个坐标并不都是独立的。对于N个质点组成的力学系统,若存在m个约束,则系统的自由度为S = 3N − m 热力学自由度热力学中,自由度 F 是当系统为平衡状态时,在不改变相的数目情况下,可独立改变的因素(如温度和压力),这些变量的数目叫做自由度数。例如,液态水系统,可以再一定范围内任意改变温度和压力,仍可保持单相的水不变,则该系统的自由度为2,记作F = 2。若系统是液态水与水蒸气平衡共存,如果指定温度,则系统压力必须等于该温度下的水的饱和蒸汽压,否则系统中汽、液两相就会有一相消失,这时压力并不能任意选择,故自由度数为1,即F = 1。也就是说,若系统保持汽-液共存的相态不变,温度和压力两者中只能任意变动一个。因此自由度数实际上是系统的独立变量数。 系统的自由度跟其他变量的关系 F = C - P + n 其中 F:表示系统的自由度 C :系统的独立组元数(number of independent component) P :相态数目 n :外界因素,多数取n=2,代表压力和温度;对于熔点极高的固体,蒸汽压的影响非常小,可取n=1。 三、工程机械机构自由度根据机械原理,机构具有确定运动时所必须给定的独立运动参数的数目(亦即为了使机构的位置得以确定,必须给定的独立的广义坐标的数目),称为机构自由度(degree of freedom of mechanism),其数目常以F表示。如果一个构件组合体的自由度F>0,他就可以成为一个机构,即表明各构件间可有相对运动;如果F=0,则它将是一个结构(structure),即已退化为一个构件。机构自由度又有平面机构自由度和空间机构自由度。 平面机构自由度:一个杆件(刚体)在平面可以由其上任一点A的坐标x和y,以及通过A点的垂线AB与横坐标轴的夹角等3个参数来决定,因此杆件具有3个自由度。 空间机构自由度:一个杆件(刚体),在空间上完全没有约束,那么它可以在3个正交方向上平动,还可以以三个正交方向为轴进行转动,那么就有6个自由度。 自由度的计算:约束增加,自由度就减少,机构的自由度为组成杆件自由度之和减去运动副的约束。 四、电子游戏在当今时代的电子游戏中,也有自由度这个概念,在高自由度的游戏中,玩家可以不必一定要按照规定的路线进行。 角色扮演游戏是自由度最高的电子游戏,玩家操作人物在地图中可以向各个方向前进、做事,受到的拘束很少。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。