请输入您要查询的百科知识:

 

词条 张鸿庆
释义

1936年生于黑龙江省绥化县四方台镇,1957年毕业于吉林大学数学系,同年至大连理工大学任教,1980年任副教授,1984年任教授,1985年任美国Georgia Tech访问教授,1987年回大连理工大学任教。

主要学术及社会兼职

:

The editor of “Applied Mathematica and Mechanics”

研究领域

(研究课题):科研工作

1956年论文“一些特殊覆盖的不可能性”获吉林大学学生科学研究一等奖,中国青年报评价为“论文题目新颖有创造性”。

1979年论文“线性算子方程组一般解的代数构造”获辽宁省重大科技成果二等奖。光明日报、辽宁日报均有报道。成果被收入“教育部直属高等学校成果选编”,评价为“一百多年来,前人对弹性力学方程组、电动力学方程组的一般解往往只能适合一种特殊情况,不能推广。这一工作总结了弹性力学方程组的各种一般解,用代数的概念和构造方法,给出了统一理论和公式,并提出了恰当解这一重要概念,把过去弹性力学中应力函数位移函数的构造方法和其他场论问题联系起来,得到统一的求恰当解的方法,并推广到一般化的线性算子方程组理论中去。这个工作受到国内专家的好评,认为不仅是对基础理论的重要贡献,还有进一步推广的价值。在国外,这方面还未见到类似的工作。”

1987年因“多变量拟协调有限元法”的数学理论获国家自然科学奖三等奖,评语为“建立了以拟协调元方法为构架的更一般的有限元数学基础,进一步提出多变量有限元的逼近性,弱闭性、嵌入性、紧致性,比过去只基于位移元和和杂交元的数学基础,向前跨了一大步。”

1987年被子授予辽宁省首批有突出贡献的中青年科技专家称号。

1988-1990年主持国家自然科学基金项目“有限元的数学理论及其应用”。1989年成果被收入“国家自然科学基金资助项目优秀成果要览。”

1991年“辽河油田稠油层岩石热物理性参数计算方法研究”获辽宁省1991年科技进步二等奖。

1992-1994年主持国家自然科学基金项目:“求解连续体力学问题的微分代数和几何拓朴方法。”

1993-1997年为国家八五攀登计划项目:“机器证明及其应用”成员。

1996-1998年主持国家基金项目:“计算固体力学的辛算术代数几何模型。”

1998年为国家九五攀登预选项目‘数学机械化及其应用”成员。

1998-2003年为国家重点基础研究发展规划项目“数学机械化与自动推理平台”成员。

1999-2001年主持博士点基金项目:“力学问题求解的代数化对偶化体系。”

2001-2001年主持国家自然科学基金项目:“力学问题求解的代数化对偶化体系。”

综上所述,张鸿庆的研究方向是偏微分方程的求解及其应用。在求解方面除了在有限元方面做过一系列工作之外,主要研究集中于构造偏微分方程的解析解,这些工作有以下特点:

1) 具有统一的理论框架。构造微分方程的解析解是十分困难的工作,已构造出的解析解各有各的技巧,没有统一的方法,大量的重要问题无法求出解析解。张鸿庆教授提出一个统一的框架,既可以系统地产生已有的解,又能得到一系列新的解析解;

2) 密切结合力学和物理 事实上这些工作来自解决力学问题,由弹性力学逐步扩大到电动力学、板壳理论、分析力学、流体力学、弧波以及理论物理的各个领域;

3) 是数学机械化事业重要的组成部分。 92年以来,张鸿庆教授一直是数学机械化项目的成员,并且是微分情形数学机械化的主要成员之一,将统一的理论框架和符号计算与计算机科学相结合,具有广阔的发展前景;

4) 研究范围从线性扩大到非线性。 96年以前的工作主要研究线性问题,96年以后重点转到非线性问题,原有的框架仍然适用,但内容有许多新的发展;

5) 由于方向正确(主攻非线性,非线性问题是当前热点),框架统一(我们首创的AC=BD模式),工具得力(计算机代数,符号计算),取得丰硕的成果,据不完全统计,2003年11月统计,SCI检索80余篇,他引170次,单篇最高他引47次。

6) 青年同志迅速成长。 例如一个博士生在一年期间发表二十几篇文章,2002年SCI总数全国排名并列第一;其他博士生和硕士生绝大多数都有论文发表,许多亦被SCI和EI检索。

指导硕、博士生研究方向:

1.数学机械化与数学物理;

2.孤子理论与可积系统;

出版著作和论文

专著

1.“有限元的数学理论” 科学出版社 1991.

2. Applications of mechanical methods to partial differential equations(chapter 17 of Mathematics Mechanization and Applications), Academic Press,NewYork ,2000.

论文

1. Zhang Hongqing, Fan EG.,Applications of mechanical methods to partial differential equations,Mathematics Mechanization and Applications (17th chapter),Academic Press Limited(2000).

2. Zhang Hongqing,A united theory on general solutions of system of elasticity,J.Dalian Univ.Tech.,18(1978):25-47.

3. Zhang Hongqing,Algebraic constructions for general solutions of linear operator systems.Acta.Mech.Sinica(Special Issue): 152-161(1981).

4.Zhang Hongqing,Superfluous order and the proper solution of the Maxwell equation, Appl.Math.Mech,2(1981):349-360.

5. Zhang Hongqing, Wang Z., The completeness and approximation of Hu Haichang’s solution ,Kexue Tongbao ,1986 ,10:667-670.

6. Zhang, Hongqing ,C-D integrable system and computer aided solver for differential equations. Computer mathematics (Matsuyama, 2001), 221--226, Lecture Notes Ser. Comput., 9, World Sci. Publishing, River Edge, NJ, 2001.

7. Zhang Hongqing,Wu F.,General solution for a class of system of partial differential equations and its application in the theory of shells,Acta Mech.Sinica,24(1992):700-707.

8. Zhang Hongqing,Wu F.,General method for general solution of theory of plane and shell,Kexue Tongbao,13(1993):671-672.

9. Zhang Hongqing, The method for constructing general solution of system of partial differential equations, Proc.Comput..Mech.Tianjin Congr.,110-112(1991).

10. Zhang Hongqing, Hamiltonian representation for linear selfadjoint partial operators,Thirty years for nonholonomic mechanics in China,Henan Univ.Press,Kaifeng , 1994,182-186.

11. Zhang Hongqing, The algebraization , mechanization , symplectication and geometrization for mechanics , Modern Meth. And Mech.VII ,Shanghai Univ.Press ,Shanghai ,1997,20-25.

12. Zhang Hongqing,Chao L.,Operational form Hilbert Nukkstellensatz and symbolic algorithm for constructing general solution of system in elasticity , J. Dalian Univ.Tech.1996, ,36:373-379.

13. Zhang Hongqing, Chao L., Mathematica program package to compute symmetries of PDEs and its applications , Comput. Phys.,1997,14:375-379.

14. Zhang Hongqing,Chao L.,Exact algorithm of Taylor polynomial for symmetries of nonlinear partial differential equations,Appl. Math. Mech.,1998, 19:195-202.

15. Zhang Hongqing, Fan E.,Backlund transformation and exact solution for (2+1) dimensional KP equation , J. Dalian Univ.Tech. ,1997, 37:624-626.

16. Zhang Hongqing, Fan E., Linearization,similarity reduction and soliton solutions of KP equation in shallow water , J.Nonliear Dynamics ,1998, 5: 236-239.

17. Zhang Hongqing, Feng H., Algebraic structure of general solutions to system of nonhomogeneous linear operator equations , J. Dalian Univ.Tech. ,1994, 34:249-255.

18. Zhang Hongqing,Wu F., Mechanical method to construct the general solution for a system of partial differential equations,Workshop Math.Mech.,Int.Academic Publ.,Beijing ,1992,280-285.

19. Zhang Hongqing,Wu F., The computational differential algebraic geometrical method for constructing the fundamental solution of partial differential equations,Proc.3rd Congr.Finete Element Method China ,Henan, China ,1992,183-191.

20. Wang Ming ,Zhang Hongqing, On the convergence of quasi-conforming elements for linear elasticity problem ,JCM ,Vol 4,No. 2, 131-145(1986).

21. Wang Ming ,Zhang Hongqing, The general Korn-Poincare inequality and its applications I ,Kexue Taosuo , Vol 2,No. 3, 83-92(1986).

22. Wang Ming ,Zhang Hongqing, A note on some finite element methods ,Comput.Math. , Vol 8,No. 3, 303-313(1986).

23. Wang Ming ,Zhang Hongqing, The finite element method of the stational Navier-Stokes system in plane , J. Dalian Univ.Tech. ,1986, 25:1-6.

24. Wang Ming ,Zhang Hongqing, The embedded property and compactness of the finite element space ,Appl. Math. Mech.,1988, 9:127-134.

25. Zhang Hongqing, The general patch test and 9-parameter quasi-conforming element ,Proc.the Sino-France Symposium on Finite Element Methods ,Science Press ,Gordan and Breach ,1983 ,566-583.

26. Zhang Hongqing, Wang Ming , Finite element approximations with multiple sets of functions and quasi-conforming elements ,Proc.the 1984 Beijing Symp on Diff.Geometry and Diff.Equations ,,Science Press ,Beijing,1985 ,354-365.

27. Zhang Hongqing, Wang Ming , Finite element approximations with multiple sets of functions and quasi-conforming elements ,Appl. Math. Mech.,1985, 6:41-52.

28. Zhang Hongqing, Wang Ming , the compactness of quasi-conforming elements space and the convergence of quasi-conforming elements ,Appl. Math. Mech.,1986, 7:409-423.

29.Yong Chen, Zhenya Yan and Hongqing Zhang, Exact solutions for a family of variable-coefficient Reaction-Duffing equations via the Backlund transformation, Theor. Math. Phys., 132(1) (2002) 970-975.

30. Yong Chen, Zhenya Yan, Biao Li and Hongqing Zhang, New Explicit Solitary Wave Solutions and Periodic Wave Solutions for the Generalized Coupled Hirota-Satsuma KdV System, Commun. Theor. Phys., 38(2002)261-262.

31. Yong Chen, Biao Li and Hongqing Zhang, Backlund Transformation and Exact Solutions for a New Generalized Zakhorov-Kuznetsov Equation, Commun. Theor. Phys., 39 (2003) 135-140.

32. Yong Chen, Yu Zheng and Hongqing Zhang, The Hamiltonian Equations in Some Mathematics and Physics Problems, Appl. Math. Mech., 24(1) (2003) 22-27.

33. Yong Chen, Zhenya Yan and Hongqing Zhang, Applications of Fractional Exterior Differential in Three Dimensional Space, Appl. Math. Mech., 24(3) (2003) 256-260.

34. Yong Chen, Biao Li and Hongqing Zhang, Exact Travelling Solutions for Some Nonlinear Evolution Equations with Nonlinear Terms of Any Order, Internat. J. Modern Phys. C, 14(1) (2003) 99-112.

35.Yong Chen, Biao Li and Hongqing Zhang, Generalized Riccati equation expansion method and its application to the (2+1)-dimensional Boussinesq equation, Internat. J. Mod. Phys. C,14(4) (2003) 471-482.

36. Yong Chen, Zhenya Yan and Hongqing Zhang, New Explicit Exact Solutions for A Generalized Hirota-Satsuma Coupled KdV System and A Coupled MKdV Equation, Chin. Phys., 12(1) (2003) 1-10.

37. Yong Chen, Biao Li and Hongqing Zhang, Exact solutions for a new class of nonlinear evolution equations with nonlinear term of any order, Chaos, Solitons and Fractals, 17 (2003) 675-682.

38. Yong Chen, Zhenya Yan and Hongqing Zhang, New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation, Phys. Lett. A, 307 (2003) 107-113.

39. Yong Chen, Biao Li and Hongqing Zhang, Auto-B\\"cklund transformation and exact solutions for modified nonlinear dispersive $mK(m,n)$ equations, Chaos, Solitons and Fractals, 17 (2003) 693-698.

40.Yong Chen, Biao Li and Hongqing Zhang, Generalized Riccati equation expansion method and its application to the Bogoyavlenskii's generalized breaking soliton equation, Chin. Phys., 2003, 8.

41. Yong Chen, Biao Li and Hongqing Zhang, Extended Jacobi elliptic function method and its applications to (2+1)-dimensional dispersive long wave equation, Chin. Phys., 2004, 1.

42. Biao Li, Yong Chen and Hongqing Zhang, Explicit Exact Solutions for New General Two-dimensional KdV-type and Two-dimensional KdV-Burgers-type Equations with Nonlinear Terms of Any Order, J. Phys. A: Math. Gen., 35 (2002) 8253-8265.

43. Biao Li, Yong Chen and Hongqing Zhang, Explicit Exact Solutions for Compound KdV-type and Compoud KdV-Burgers-type Equations with Nonlinear Terms of Any Order, Chaos, Solitons and Fractals, 15 (2003) 647-654.

44. Biao Li, Yong Chen and Hongqing Zhang, Auto-Backlund transformation and exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order, Phys. Lett. A, 305(6) (2002) 377-382.

45. Biao Li, Yong Chen and Hongqing Zhang, Explicit Exact Solutions for Some Nonlinear Partial Differential Equations with Nonlinear Terms of Any Order, Czech. J. Phys., 53(4) (2003) 283-295. (SCI)}

46. Biao Li, Yong Chen, Hengnong Xuan and Hongqing Zhang, Symbolic computation and construction of soliton-like solutions for a breaking soliton equation, Chaos, Solitons and Fractals, 17(5) (2003) 885-893.

47. Xuedong Zheng, Yong Chen and Hongqing Zhang, Generalized Extended Tanh-Function Methods and its Application to (1+1)-Dimensional Dispersive Long Wave Equation, Phys. Lett. A, 311 (2003) 145-157.

48. Xuedong Zheng, Yong Chen, Biao Li and Hongqing Zhang, A new generalization of extended tanh-function method for solving nonlinear evolution equations, Commun. Theor. Phys., 39 (2003) 647-652.

49. De-sheng Li and Hong-qing Zhang, New soliton-like solutions to the potential Kadomstev–Petviashvili (PKP) equation,(2003) Applied Mathematics and Computation, Volume 146, Issues 2-3, Pages 381-384.

50. De-sheng Li and Hong-qing Zhang, Some New Exact Solutions to the Dispersive Long-Wave Equation in (2+1)-Dimensional Spaces,(2003) Communications in Theoretical Physics,Volume 40, Issues 2, Pages 143-146.

51. De-sheng Li and Hong-qing Zhang, Some new exact solutions of the integrable Broer–Kaup equations in (2+1)-dimensional spaces,(2003)Chaos, Solitons & Fractals,Volume 18, Issue 1, Pages 193-196.

52. De-sheng Li and Hong-qing Zhang, Exact solutions of the (3+1)-dimensional KP and KdV-type equation (2003) Communications in Theoretical Physics,Volume 39, Issues 4, Pages 405-408.

53. De-sheng Li and Hong-qing Zhang, A further extended tanh-function method and new soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1) dimensional spaces, Applied Mathematics and Computation 147 (2004) 537–545.

54. De-sheng Li and Hong-qing Zhang, A new extended tanh-function method and its application to the dispersive long wave equations in (2+1)- dimensions, Applied Mathematics and Computation 147 (2004) 789–797.

55. Huaitang Chen, Hongqing Zhang, Extended Jacobin elliptic function method and its applications. [Extended Jacobian elliptic function method and its applications,J.APPL.Math.Comput.,10 (2002) 119--130.

56. Huaitang Chen, Hongqing Zhang, Improved Jacobin elliptic function method and its applications. Chaos, Solitons and Fractals 15 (2003) 585--591.

57 . Zhuosheng Lu , Hongqing Zhang, On a further extended tanh method. Phys.Lett.A, 307 (2003) 269--273.

58. Zhuosheng Lu , Hongqing Zhang, Soliton-like and period form solutions for high dimensional nonlinear evolution equations. Chaos, Solitons and Fractals 17 (2003) 669--673.

59.Huaitang Chen, Hongqing Zhang,New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation,Chaos, Solitons and Fractals 19 (2004) 71–76.

60. Zhuosheng Lu , Hongqing Zhang,Soliton like and multi-soliton like solutions for the Boiti–Leon–Pempinelli equation, Chaos, Solitons and Fractals 19 (2004) 527–531.

61. Yong Chen, Xuedong Zheng, Biao Li, Hongqing Zhang, New exact solutions for some nonlinear differential equations using symbolic computation, Applied Mathematics and Computation 149 (2004) 277–298.

62. Li, De-Sheng; Lü, Zhuo-Sheng; Zhang, Hong-Qing, Exact solutions of the (3+1)-dimensional KP and KdV-type equations. Commun. Theor. Phys. (Beijing) 39 (2003), no. 3, 267—270.

63. Zhang, Yu-Feng; Zhang, Hong-Qing,Solitary wave solutions for the coupled Ito system and a generalized Hirota-Satsuma coupled KdV system. Commun. Theor. Phys. (Beijing) 36 (2001), no. 6, 657--660.

64. XIA Tie-cheng, ZHANG Hong-qing, Generalized Numerical Radius of Real Quaternion Matrices with Symmetric Function, CHINESE QUARTERLY JOURNAL OF MATHEMATICS ,Vol. 15 No. 3,34-38.

65. Zhang Yufeng,Zhang Hong qing, BACKLUND TRANSFORMATION AND SIMILARITYREDUCTIONSOF BOUSSINESQ EQUATION, Transactions of Nanjing University of Aeronautics&Astronautics,Vo l. 17. No. 2,199-202.

66. Alatancang,Zhang Hongqing,Zhong Wanxie, PSEUDO-DIVISION ALGORITHM FOR MATRIX MULTIVARIABLE POLYNOMIAL AND ITS APPLICATION, Applied Mathematics and Mechanics,Vol . 21 , No. 7,733-740.

67. ZHANG Yu-feng , ZHANG Hong-qing, A FAMILY OF INTEGRABLE SYSTEMS OF LIOUVILLE AND LAX REPRESENTATION , DARBOUX TRANSFORMATIONS FOR ITS CONSTRAINED FLOWS, Applied Mathematics and Mechanics,Vol 23 , No 1,Jan 2002,26-34.

68. ZHANG Hong- qing,XIE Fu- ding,LU Bin, ASYMBOLIC COMPUTATION METHOD TO DECIDE THE COMPLETENESS OF THE SOLUTIONS TO THE SYSTEM OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS, Applied Mathematics and Mechanics,Vol 23 , No 10,1134-1139.

69. ZHANG Yu-feng, ZHANG Hong-qing, YAN Qing-you, Integrable couplings of a generalized AKNS hierarchy, J. CENT. SOUTHUNIV. TECHNOL.,Vol . 9,No. 3,220-223.

70. ZHANG Yu-feng, ZHANG Hong-qing, YAN Qing-you, Integrable couplings of Botie-Pempinelli-Tu (BPT) hierarchy, Physics Letters A 299 (2002) 543–548.

71. ZHANG Hong-qing, ZHANG Yu-feng, BACKLUND TRANSFORMATION ,NONLINEAR SUPERPOSITION FORMULAE AND INFINITE, Applied Mathematics and Mechanics,Vol 22 , No 10.

72. TONG Deng-ke,Zhang Hong-qing, THE FLOW PROBLEM OF FLUIDS FLOW IN A FRACTALRES ERVOIR WITH DOUBLE POROSITY, Applied Mathematics and Mechanics,Vol 22 , No 10,1118-1126.

73. FAN En-gui, ZHANG Hong-qing, A NEW COMPLETELY INTEGRABL ELIOUVILLE’S SYSTEM , ITS LAX REPRESENTATION AND BI-HAMILTONIAN STRUCTURE, Applied Mathematics and Mechanics,Vol 22 , No 5,520-527.

74. Chen, Yong; Yan, Zhenya; Li, Biao; Zhang, Hong Qing,New explicit solitary wave solutions and periodic wave solutions for the generalized coupled Hirota-Satsuma KdV system. Commun. Theor. Phys. (Beijing) 38 (2002), no. 3, 261--266.

75. Chen, Yong; Yan, Zhenya; Zhang, Hong Qing , Obtaining exact solutions for a family of "reaction-Duffing" equations with variable coefficients using a Backlund transformation (Russian) Teoret. Mat. Fiz. 132 (2002), no. 1, 90—96.

76. Yan, Zhenya; Zhang, Hong Qing, Constructing families of soliton-like solutions to a $(2+1)$-dimensional breaking soliton equation using symbolic computation. Comput. Math. Appl. 44 (2002), no. 10-11, 1439--1444.

77. Yan, Zhenya; Zhang, Hong Qing ,A family of new integrable couplings with two arbitrary functions of TC hierarchy. J. Math. Phys. 43 (2002), no. 10, 4978--4986.

78. Xie, Fu Ding; Yan, Zhenya; Zhang, Hong Qing, Similarity reductions for the nonlinear evolution equation arising in the Fermi-Pasta-Ulam problem. Appl. Math. Mech. (English Ed.) 23 (2002), no. 4, 380--386;

79. Yan, Zhenya; Zhang, Hong Qing ,Multiple soliton-like and periodic-like solutions to the generalization of integrable (2+1)-dimensional dispersive long-wave equations. J. Phys.Soc. Japan 71 (2002), no. 2, 437--442.

80. Yan, Zhenya; Zhang, Hong Qing, A Lax integrable hierarchy, N-Hamiltonian structure, r-matrix, finite-dimensional Liouville integrable involutive systems, and involutive solutions. Chaos Solitons Fractals 13 (2002), no. 7, 1439--1450.

81. Yan, Zhenya; Zhang, Hong Qing, A new hierarchy of generalized derivative nonlinear Schrodinger equations, its bi-Hamiltonian structure and finite-dimensional involutive system. Nuovo Cimento Soc. Ital. Fis. B (12) 116 (2001), no. 11, 1255--1263.

82. Yan, Zhenya; Zhang, Hong Qing ,Symbolic computation and abundant new families of exact solutions for the coupled modified KdV-KdV equation. Computer mathematics (Matsuyama, 2001), 193--200, Lecture Notes Ser. Comput., 9, World Sci. Publishing, River Edge, NJ, 2001. 3

83. Yan, Zhenya; Xie, Fu-Ding; Zhang, Hong Qing ,Symmetry reductions, integrability and solitary wave solutions to high-order modified Boussinesq equations with damping term. Commun. Theor. Phys. (Beijing) 36 (2001), no. 1, 1--6.

84. Yan, Zhenya; Zhang, Hong Qing, Similarity reductions and analytic solutions for (2+1)- dimensional dispersive long wave equations. (Chinese) Acta Math. Sci. Ser. A Chin. Ed. 21 (2001), no. 3, 384--390.

85. Yan, Zhenya; Zhang, Hong Qing, Study on exact analytical solutions for two systems of nonlinear evolution equations. Appl. Math. Mech. (English Ed.) 22 (2001), no. 8, 925--934;

86. Yan, Zhenya; Zhang, Hong Qing, Study of explicit analytic solutions for the nonlinear coupled scalar field equations. Appl. Math. Mech. (English Ed.) 22 (2001), no. 6, 637--641;

87. Xia, Tie Cheng; Zhang, Hong Qing; Yan, Zhenya, New explicit and exact travelling wave solutions for a class of nonlinear evolution equations. Appl. Math. Mech. (English Ed.) 22 (2001), no. 7, 788--793;

88. Yan, Zhenya; Zhang, Hong Qing, New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water. Phys. Lett. A 285 (2001), no. 5-6, 355--362.

89. Yan, Zhenya; Zhang, Hong Qing, A new Lax-integrable hierarchy of evolution equations and its infinite-dimensional bi-Hamiltonian structure. (Chinese) Acta Phys. Sinica 50 (2001), no. 7, 1232--1236.

90. Yan, Zhenya; Zhang, Hong Qing, Auto-Darboux transformation and exact solutions of the Brusselator reaction diffusion model. Appl. Math. Mech. (English Ed.) 22 (2001), no. 5, 541--546;

91. Xie, Fuding; Yan, Zhenya; Zhang, Hong Qing, Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow water equations. Phys. Lett. A 285 (2001), no. 1-2, 76--80.

92. Xia, Tie Cheng; Zhang, Hong Qing; Yan, Zhenya A new approach to constructing exact solutions of nonlinear evolution equations. (Chinese) J. Dalian Univ. Technol. 41 (2001), no. 3, 260--263.

93. Yan, Zhenya; Zhang, Hong Qing, Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces. J. Phys. A 34 (2001), no. 8, 1785--1792.

94. Yan, Zhenya; Zhang, Hong Qing, A hierarchy of generalized AKNS equations, N-Hamiltonian structures and finite-dimensional involutive systems and integrable systems. J. Math. Phys. 42 (2001), no. 1, 330--339.

95. Yan, Zhenya; Zhang, Hong Qing ,Some conclusions for (2+1)-dimensional generalized KP equation: Darboux transformation, nonlinear superposition formula and soliton-like solutions. Computer mathematics (Chiang Mai, 2000), 239--248, Lecture Notes Ser. Comput., 8, World Sci. Publishing, River Edge, NJ, 2000.

96. Yan, Zhenya; Zhang, Hong Qing, Similarity reductions for a nonlinear wave equation with damping term. (Chinese) Acta Phys. Sinica 49 (2000), no. 11, 2113--2117.

97. Yan, Zhenya; Zhang, Hong Qing, Applications of Backklund transformations to explicit and exact solutions in nonlinear wave equations. Commun. Theor. Phys. (Beijing) 34 (2000), no. 2, 365--368.

98. Zhang, Hong Qing; Yan, Zhenya, Two types of new algorithms for finding explicit analytical solutions of nonlinear differential equations. Appl. Math. Mech. (English Ed.) 21 (2000), no. 12, 1423--1431;

99. Yan, Zhenya; Zhang, Hong Qing, Similarity reductions for +1$-dimensional variable coefficient generalized Kadomtsev-Petviashvili equation. Appl. Math. Mech. (English Ed.) 21 (2000), no. 6, 645--650;

100. Yan, Zhenya; Zhang, Hong Qing ,On a new lgorithm of constructing solitary wave solutions for systems of nonlinear evolution equations in mathematical physics. Appl. Math. Mech. (English Ed.) 21 (2000), no. 4, 383--388;

101. Yan, Zhenya; Zhang, Hong Qing, Explicit exact solutions of nonlinear approximate equations for long waves in shallow water. (Chinese) Acta Phys. Sinica 48 (1999), no. 11, 1962--1968.

102. Yan, Zhenya; Zhang, Hong Qing, Exact soliton solutions of variable coefficient KdV-MKdV equations with three arbitrary functions. (Chinese)Acta hys. Sinica 48 (1999), no. 11, 1957--1961.

103. Yan, Zhenya; Zhang, Hong Qing; Fan, En Gui,New explicit travelling wave solutions for a class of nonlinear evolution equations. (Chinese) Acta Phys. Sinica 48 (1999), no. 1, 1--5.

104. Yan, Zhenya; Zhang, Hongqing, New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics. Phys..Lett. A 252 (1999), no.6,291--296.

105.关于F型空间的一个几何性质 东北人民大学自然科学学报 1957.2

106.船体数学放样的数值松弛法 大边工学院学报 1973.1

107.船体数学放样的松弛法 造船技术 1973.3

108.想像猜测与数理科学 自然辩证法信息 1982.3

109.广义分片检验与12参数拟协调元 大连工学院学报 1982.3

110.广义分片检验与9参数拟协调元 科学探索 1982.4

111.数学直觉的意义和应用 高等教育研究 1984.1

112.数学抽象原理论与抽象原分析法 数学研究与评论 1985.2

科研成果及所受奖励

1987年因“多变量拟协调有限元法”的数学理论获国家自然科学奖三等奖,评语为“建立了以拟协调元方法为构架的更一般的有限元数学基础,进一步提出多变量有限元的逼近性,弱闭性、嵌入性、紧致性,比过去只基于位移元和和杂交元的数学基础,向前跨了一大步。”

1979年获辽宁省重大科技成果二等奖,

1982年获辽宁省自然科学优秀论文一等奖,1

987年获国家自然科学三等奖,并被评为省有突出贰献的中青年科技人员。

1988年获辽宁省优秀学术论文二等奖。

1987年被子授予辽宁省首批有突出贡献的中青年科技专家称号。

1989年成果被收入“国家自然科学基金资助项目优秀成果要览”。

1991年“辽河油田稠油层岩石热物理性参数计算方法研究”获辽宁省1991年科技进步二等奖。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/9 22:10:55