词条 | 约瑟夫·拉格朗日 |
释义 | 约瑟夫·拉格朗日,全名约瑟夫·路易斯·拉格朗日(Joseph-Louis Lagrange 1735~1813)法国数学家、物理学家。1736年1月25日生于意大利都灵,1813年4月10日卒于巴黎。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。 拉格朗日生平拉格朗日1736年1月25日生于意大利西北部的都灵。父亲是法国陆军骑兵里的一名军官,后由于经商破产,家道中落。据拉格朗日本人回忆,如果幼年时家境富裕,他也就不会作数学研究了,因为父亲一心想把他培养成为一名律师。拉格朗日个人却对法律毫无兴趣。 拉格朗日科学研究所涉及的领域极其广泛。他在数学上最突出的贡献是使数学分析与几何与力学脱离开来,使数学的独立性更为清楚,从此数学不再仅仅是其他学科的工具。 拉格朗日总结了18世纪的数学成果,同时又为19世纪的数学研究开辟了道路,堪称法国最杰出的数学大师。同时,他的关于月球运动(三体问题)、行星运动、轨道计算、两个不动中心问题、流体力学等方面的成果,在使天文学力学化、力学分析化上,也起到了历史性的作用,促进了力学和天体力学的进一步发展,成为这些领域的开创性或奠基性研究。 在柏林工作的前十年,拉格朗日把大量时间花在代数方程和超越方程的解法上,作出了有价值的贡献,推动一代数学的发展。他提交给柏林科学院两篇著名的论文:《关于解数值方程》和《关于方程的代数解法的研究》 。把前人解三、四次代数方程的各种解法,总结为一套标准方法,即把方程化为低一次的方程(称辅助方程或预解式)以求解。 拉格朗日也是分析力学的创立者。拉格朗日在其名著《分析力学》中,在总结历史上各种力学基本原理的基础上,发展达朗贝尔、欧拉等人研究成果,引入了势和等势面的概念,进一步把数学分析应用于质点和刚体力学,提出了运用于静力学和动力学的普遍方程,引进广义坐标的概念,建立了拉格朗日方程,把力学体系的运动方程从以力为基本概念的牛顿形式,改变为以能量为基本概念的分析力学形式,奠定了分析力学的基础,为把力学理论推广应用到物理学其他领域开辟了道路。 他还给出刚体在重力作用下,绕旋转对称轴上的定点转动(拉格朗日陀螺)的欧拉动力学方程的解,对三体问题的求解方法有重要贡献,解决了限制性三体运动的定型问题。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。 拉格朗日的研究工作中,约有一半同天体力学有关。他用自己在分析力学中的原理和公式,建立起各类天体的运动方程。在天体运动方程的解法中,拉格朗日发现了三体问题运动方程的五个特解,即拉格朗日平动解。此外,他还研究了彗星和小行星的摄动问题,提出了彗星起源假说等。 近百余年来,数学领域的许多新成就都可以直接或间接地溯源于拉格朗日的工作。所以他在数学史上被认为是对分析数学的发展产生全面影响的数学家之一。 经历青年时代到了青年时代,在数学家雷维里的教导下,拉格朗日喜爱上了几何学。17岁时,他读了英国天文学家哈雷的介绍牛顿微积分成就的短文《论分析方法的优点》后,感觉到“分析才是自己最热爱的学科”,从此他迷上了数学分析,开始专攻当时迅速发展的数学分析。 18岁时,拉格朗日用意大利语写了第一篇论文,是用牛顿二项式定理处理两函数乘积的高阶微商,他又将论文用拉丁语写出寄给了当时在柏林科学院任职的数学家欧拉。不久后,他获知这一成果早在半个世纪前就被莱布尼兹取得了。这个并不幸运的开端并未使拉格朗日灰心,相反,更坚定了他投身数学分析领域的信心。 游历1755年拉格朗日19岁时,在探讨数学难题“等周问题”的过程中,他以欧拉的思路和结果为依据,用纯分析的方法求变分极值。第一篇论文“极大和极小的方法研究”,发展了欧拉所开创的变分法,为变分法奠定了理论基础。变分法的创立,使拉格朗日在都灵声名大震,并使他在19岁时就当上了都灵皇家炮兵学校的教授,成为当时欧洲公认的第一流数学家。1756年,受欧拉的举荐,拉格朗日被任命为普鲁士科学院通讯院士。 1764年,法国科学院悬赏征文,要求用万有引力解释月球天平动问题,他的研究获奖。接着又成功地运用微分方程理论和近似解法研究了科学院提出的一个复杂的六体问题(木星的四个卫星的运动问题),为此又一次于1766年获奖。 1766年德国的腓特烈大帝向拉格朗日发出邀请时说,在“欧洲最大的王”的宫廷中应有“欧洲最大的数学家”。于是他应邀前往柏林,任普鲁士科学院数学部主任,居住达20年之久,开始了他一生科学研究的鼎盛时期。在此期间,他完成了《分析力学》一书,这是牛顿之后的一部重要的经典力学著作。书中运用变分原理和分析的方法,建立起完整和谐的力学体系,使力学分析化了。他在序言中宣称:力学已经成为分析的一个分支。 1783年,拉格朗日的故乡建立了"都灵科学院",他被任命为名誉院长。1786年腓特烈大帝去世以后,他接受了法王路易十六的邀请,离开柏林,定居巴黎,直至去世。 这期间他参加了巴黎科学院成立的研究法国度量衡统一问题的委员会,并出任法国米制委员会主任。1799年,法国完成统一度量衡工作,制定了被世界公认的长度、面积、体积、质量的单位,拉格朗日为此做出了巨大的努力。 1791年,拉格朗日被选为英国皇家学会会员,又先后在巴黎高等师范学院和巴黎综合工科学校任数学教授。1795年建立了法国最高学术机构——法兰西研究院后,拉格朗日被选为科学院数理委员会主席。此后,他才重新进行研究工作,编写了一批重要著作:《论任意阶数值方程的解法》、《解析函数论》和《函数计算讲义》,总结了那一时期的特别是他自己的一系列研究工作。 终年1813年4月3日,拿破仑授予他帝国大十字勋章,但此时的拉格朗日已卧床不起,4月11日早晨,拉格朗日逝世。 拉格朗日的科学成就概述拉格朗日科学研究所涉及的领域极其广泛。他在数学上最突出的贡献是使数学分析与几何与力学脱离开来,使数学的独立性更为清楚,从此数学不再仅仅是其他学科的工具。 月球问题拉格朗日总结了18世纪的数学成果,同时又为19世纪的数学研究开辟了道路,堪称法国最杰出的数学大师。同时,他的关于月球运动(三体问题)、行星运动、轨道计算、两个不动中心问题、流体力学等方面的成果,在使天文学力学化、力学分析化上,也起到了历史性的作用,促进了力学和天体力学的进一步发展,成为这些领域的开创性或奠基性研究。 方程解法在柏林工作的前十年,拉格朗日把大量时间花在代数方程和超越方程的解法上,作出了有价值的贡献,推动了代数学的发展。他提交给柏林科学院两篇著名的论文:《关于解数值方程》和《关于方程的代数解法的研究》。把前人解三、四次代数方程的各种解法,总结为一套标准方法,即把方程化为低一次的方程(称辅助方程或预解式)以求解。 置换群他试图寻找五次方程的预解函数,希望这个函数是低于五次的方程的解,但未获得成功。然而,他的思想已蕴含着置换群概念,对后来阿贝尔和伽罗华起到启发性作用,最终解决了高于四次的一般方程为何不能用代数方法求解的问题。因而也可以说拉格朗日是群论的先驱。 数论在数论方面,拉格朗日也显示出非凡的才能。他对费马提出的许多问题作出了解答。如,一个正整数是不多于4个平方数的和的问题等等,他还证明了圆周率的无理性。这些研究成果丰富了数论的内容。 幂级数在《解析函数论》以及他早在1772年的一篇论文中,在为微积分奠定理论基础方面作了独特的尝试,他企图把微分运算归结为代数运算,从而抛弃自牛顿以来一直令人困惑的无穷小量,并想由此出发建立全部分析学。但是由于他没有考虑到无穷级数的收敛性问题,他自以为摆脱了极限概念,其实只是回避了极限概念,并没有能达到他想使微积分代数化、严密化的目的。不过,他用幂级数表示函数的处理方法对分析学的发展产生了影响,成为实变函数论的起点。 分析力学拉格朗日也是分析力学的创立者。拉格朗日在其名著《分析力学》中,在总结历史上各种力学基本原理的基础上,发展达朗贝尔、欧拉等人研究成果,引入了势和等势面的概念,进一步把数学分析应用于质点和刚体力学,提出了运用于静力学和动力学的普遍方程,引进广义坐标的概念,建立了拉格朗日方程,把力学体系的运动方程从以力为基本概念的牛顿形式,改变为以能量为基本概念的分析力学形式,奠定了分析力学的基础,为把力学理论推广应用到物理学其他领域开辟了道路。 拉格朗日方法他还给出刚体在重力作用下,绕旋转对称轴上的定点转动(拉格朗日陀螺)的欧拉动力学方程的解,对三体问题的求解方法有重要贡献,解决了限制性三体运动的定型问题。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。 行星问题拉格朗日的研究工作中,约有一半同天体力学有关。他用自己在分析力学中的原理和公式,建立起各类天体的运动方程。在天体运动方程的解法中,拉格朗日发现了三体问题运动方程的五个特解,即拉格朗日平动解。此外,他还研究了彗星和小行星的摄动问题,提出了彗星起源假说等。 欧洲最大的数学家近百余年来,数学领域的许多新成就都可以直接或间接地溯源于拉格朗日的工作。所以他在数学史上被认为是对分析数学的发展产生全面影响的数学家之一。被誉为“欧洲最大的数学家”。 “三L”法国18世纪后期到19世纪初数学界著名的三个人物——拉格朗日(josephlouislagrange)、拉普拉斯(pierre-simonlaplace)和勒让德(adrien-marielegendre)。因为他们三个的姓氏的第一个字母为“L”,又生活在同一时代,所以人们称他们为“三L”。 拉格朗日拉格朗日,J.L.(Lagrange,Joseph Louis) 1736年1月25日生于意大利都灵;1813年4月11日卒于法国巴黎。数学家、力学家、天文学家。 拉格朗日来历拉格朗日父姓拉格朗日亚(Lagrangia)。拉格明日在都灵出生受洗记录上的正式名字为约瑟普·洛德维科·拉格朗日亚(Giuseppe Lodovico,Lagrangia)。父名弗朗切斯科·洛德维科·拉格朗日亚(Francesco Lodovico, Lagrangia);母名泰雷萨·格罗索(Teresa Grosso)。他曾用过的姓有德·拉·格朗日(De la Grange),拉·格朗日(La Grange)等。去世后,法兰西研究院给他写的颂词中,正式用现在姓名。 父系为法国后裔。曾祖是法国骑兵上校,到意大利后与罗马家族的人结婚定居;祖父任都灵的公共事务和防务局会计,又同当地人结婚。父亲也在都灵同一单位工作,共有11个子女,但大多数夭折,拉格朗日最大。 拉格朗日回忆据拉格朗日本人回忆,如幼年家境富裕,可能不会作数学研究。父亲有一条家规:必须有一子继任他的职业,拉格朗日也不反对。但到青年时代,在数学家F.A.雷维里(Revelli)指导下学几何学后,萌发了他的数学天才。17岁开始专攻当时迅速发展的数学分析。 拉格朗日经历18岁时(1754),他曾用意大利语写出第一篇论文,是用牛顿二项式定理处理两函数乘积的高阶微商。寄给数学家G。法尼亚诺(Fagnano),并用拉丁语写出寄给在柏林的L·欧拉(Euler)。可是当年8月他看到了公布的G。莱布尼兹(Leibniz)同J·伯努利(Bernoulli)的通信,正是这个内容,即后来的莱布尼兹公式。此不幸开端并未使拉格朗日灰心,9月给法尼亚诺的信中说他正研究等时曲线,并于年底开始研究变分极值问题。 拉格朗日在1755年8月12日写给普鲁士科学院数学部主任欧拉的信中,给出了用纯分析方法求变分极值的提要;欧拉在9月6日回信中称此工作很有价值。他本人也认为这是第一篇有意义的论文,对变分法创立有贡献。此成果使他在都灵出名。9月28日,年仅19岁的拉格朗日被任命为都灵皇家炮兵学校教授。从此走向数学研究的道路,逐步成为当时第一流的科学家,在数学、力学和天文学中都做出了历史性的重大贡献。其学术生涯自然地可分为三个时期。 都灵时期(1766年以前)。拉格朗日任数学教授后,积极进行研究。1756年给欧拉的信中,开始把变分法用于力学,还把欧拉关于有心力的一个定理推广到一般动力学问题。欧拉把信送交上级P·莫培督(Maupertuis)和科学院院长。莫培督看到拉格朗日是他的最小作用原理的支持者、建议拉格朗日来普鲁士任讲座教授,条件比都灵优越,但拉格朗日谢绝。同年8月,他被任命为普鲁士科学院通讯院士,9月2日选为副院士。 1757年,以拉格朗日为首的一批都灵青年科学家,成立了一个科学协会,即都灵皇家科学院的前身。并从1759年开始,用拉丁语和法语出版学术刊物《都灵科学论丛》(Miscellanea Taurine- nsia,法语名Mélanges de Turin)。前三卷刊登了拉格朗日几乎全部在都灵时期的论文。其中有关变分法、分析力学、声音传播、常微分方程解法、月球天平动、木卫运动等方面的成果都是当时最出色的,为后来他在这些领域内更大贡献打下了基础。此外他在岁差章动,大行星运动方面也有重要贡献。 1763年11月,都灵王朝代表去伦敦赴任时,带拉格朗日到巴黎。受到巴黎科学院的热烈欢迎,并初次会见J·R·达朗贝尔(d’Alembert)。在巴黎停留六周后病倒,不能去伦敦。康复后遵照达朗贝尔意见,回国途中在日内瓦拜访了当时著名数学家D·伯努利(Daniel Bernoulli)和文学家F·伏尔泰(Voltaire),他们的看法对拉格朗日以后的工作有启发。 回到都灵后,拉格朗日的声望更高。朝野都认为他在都灵不能发挥才能。1765年秋,达朗贝尔写信给普鲁士国王腓特烈二世,热情赞扬拉格朗日,并建议在柏林给拉格朗日一个职位。国王同意后通知拉格朗日。但他回信表示不愿与欧拉争职位。1766年3月,达朗贝尔来信说欧拉决定离开柏林,并请他担任留下的职位。拉格朗日决定接受。待5月3日欧拉离开柏林去彼得堡后,拉格朗日正式接受普鲁士邀请,于8月21日离开都灵。 柏林时期(1766—1787)。去柏林途经巴黎时,拉格朗日与达朗贝尔合作两周,于10月27日到达柏林。11月6日任命他为普鲁士科学院数学部主任。他很快就与院内主要骨干友好相处,如J·伯努利(Johann BernoulliⅢ)等。 1767年9月,拉格朗日同维多利亚·孔蒂(Vittoria Conti)结婚。他给达朗贝尔的信中说:“我的妻子是我的一个表妹,曾与我家人一起生活很长时期,是一个很好的家庭妇女。”但她体弱多病,未生小孩,久病后于1783年去世。 在普鲁士科学院,拉格朗日的任务是每月宣读一篇论文,内容一般在《科学院文献》(Mémoires des l'Academie royale des scien-ces)以及《柏林科学院新文献》(Nouveaux memoires de l'Academie des Berlin)上发表。他还接受达朗贝尔的建议,经常参加巴黎科学院竞赛课题研究,并获得1772、1774、1776、1780年度的奖金。 拉格朗日研究拉格朗日在柏林期间完成了大量重大研究成果,为一生研究中的鼎盛时期,多数论文在上述两刊物中发表,少量仍寄回都灵。其中有关月球运动(三体问题)、行星运动、轨道计算、两个不动中心问题、流体力学、数论、方程论、微分方程、函数论等方面的成果,成为这些领域的开创性或奠基性研究。此外,还在概率论、循环级数以及一些力学和几何学课题方面有重要贡献。他还翻译了欧拉和A.棣莫弗(De Moivre)的著作。 1782年给P.拉普拉斯(Laplace)的信中说:“我几乎写完《分析力学论述》(Traitéde Mécanique Analytique),但无法出版.”拉普拉斯安排在巴黎出版,出书时已是1788年,拉格朗日已到巴黎了。此书成为分析力学的奠基著作。 拉格朗日研究经历1783年,老家建立“都灵科学院”,任命拉格朗日为名誉院长。原出版刊物改为《都灵科学院综合论丛》(Mélanges des l’Acade-mie des sciences des Turin)。拉格朗日也常寄论文回去发表。到1786年8月,因支持他的普鲁士国王腓特烈二世去世,决定离开柏林。他于1787年5月18日应巴黎科学院邀请动身去法国。 巴黎时期(1787—1813)。拉格朗日1787年7月29日正式到巴黎科学院工作。由于他从1772年起就是该院副院士,这次来工作受到了更热情的欢迎,可惜达朗贝尔已在1783年去世。 到巴黎的前几年,他主要学习更广泛的知识,如形而上学、历史、宗教、医药和植物学等。1789年爆发资产阶级革命,他只是有兴趣地旁观。1790年5月8日的制宪大会上通过了十进位的公制法,科学院建立相应的“度量衡委员会”,拉格朗日为委员之一。8月8日,国民议会决定对科学院专政,三个月后又决定把A.L.拉瓦锡(Lavoisier),拉普拉斯,C.A.库伦(Coulomb)等著名院士清除出科学院。但拉格朗日被保留,并任度量衡委员会主席。 1792年,丧偶9年的拉格朗日同天文学家勒莫尼埃(LeMonnier)的女儿何蕾-弗朗索瓦-阿德莱德(Renée-Francoise- Adelaide)结婚,虽未生儿女,但家庭幸福。 1793年9月政府决定逮捕所有在敌国出生的人,经拉瓦锡竭力向当局说明后,把拉格朗日作为例外。 1794年5月7日法国雅各宾派开庭审判波旁王朝包税组织人物,把包括拉瓦锡在内的28名成员全部处以死刑,拉格朗日等人尽力地挽救,请求赦免,但是遭到了革命法庭副长官考费那尔(J.B.Coffinhal)的拒绝,全部予以驳回,并宣称,“共和国不需要学者,而只需要为国家而采取的正义行动!”第二天5月8日的早晨,拉格朗日痛心地说:“他们可以一眨眼就把拉瓦锡的头砍下来,但他那样的头脑一百年也再长不出一个来了。” 1795年成立国家经度局,统一管理全国航海、天文研究和度量衡委员会,拉格朗日是委员之一。同年成立的两个法国最高学府:师范学校和综合工科学校中,拉格朗日等为首批教授。在取消对科学院的专政后,1795年建立了法国最高学术机构——法兰西研究院,选举拉格朗日为第一分院(即科学院)的数理委员会主席。此后他才重新进行研究工作,但主要是整理过去的工作,并结合教材编写完成一批重要著作。 《分析力学论述》于1788年出版后,拉格朗日就着手把书中的原理和方法推广到一般的情况。他在1810年前发表的一些论文, 如在《法兰西学院文献》(Memoires de l' Institute)中刊登的“关于任意常数变异法在所有力学问题中的一般理论”(Memoirs sur la théorie génèrale de la variatiou des constantes arbitrairesdans tons les problèmes de la mécanique,1809年3月宣读)等,都是为修改出第二版作准备。第二版更名为《分析力学》(Mé-canique analytique),分两卷,上卷于1811年出版,下卷直到1816年才印出,拉格朗日已去世三年。 他在师范学校的教材《师范学校数学基础教程》(Les le consélèmentaires sur les Mathématique donnés à l' cole Normale)于1796年出版,后来收进《拉格朗日文集》(Oeuvres de Lagrange,下面简称《文集》),第七卷的内容他在1812年作过大量充实。 1798年出版的《论任意阶数值方程的解法》(Traité de la ré-solution des éqnations numériques de tous les degrés),总结了早年在方程式论方面的成果,并加以系统化,充实后于1808年再版。 关于函数论方面他出版了两本历史性著作。一是《解析函数论,含有微分学的主要定理,不用无穷小,或用在消失的量,或极限与留数等概念,而扫结为代数分析艺术》(Theorie des fonctionsanalytiques,contenant les principes du calcul diffèrentiel dégagés de toute considération d'infiniment petits, d'éranouissa-nts, de limites et de fluxions, et réduits à l'analyse algébrique de quantités finies),1797年出版,1813年再版;另一本《函数计算教程》(Lecons sur le calcul des fonctions), 1801年出版,由师范学校讲义改编。 1799年雾月政变后,拿破仑(Napoleon)提名拉格朗日等著名科学家为上议院议员及新设的勋级会荣誉军团成员,封为伯爵;还在1813年4月3日授予他帝国大十字勋章。此时拉格朗日已重病在身,终于在4月11日晨逝世。在葬礼上,由议长拉普拉斯代表上议院,院长拉赛佩德(Lacépède)代表法兰西研究院致悼词。意大利各大学都举行了纪念活动,但柏林未进行任何活动,因当时普鲁士加入反法联盟。 主要贡献评述拉格朗日在数学、力学和天文学三个学科中都有重大历史性贡献,但他主要是数学家,研究力学和天文学的目的是表明数学分析的威力。全部著作、论文、学术报告记录、学术通讯超过500篇。 拉格朗日的学术生涯主要在18世纪后半期。当对数学、物理学和天文学是自然科学主体。数学的主流是由微积分发展起来的数学分析,以欧洲大陆为中心;物理学的主流是力学;天文学的主流是天体力学。数学分析的发展使力学和天体力学深化,而力学和天体力学的课题又成为数学分析发展的动力。当时的自然科学代表人物都在此三个学科做出了历史性重大贡献。下面就拉格朗日的主要贡献分别评述。 数学分析的开拓者 牛顿和莱布尼兹以后的欧洲数学分裂为两派。英国仍坚持牛顿在《自然哲学中的数学原理》中的几何方法,进展缓慢;欧洲大陆则按莱布尼兹创立的分析方法(当时包括代数方法),进展很快,当时叫分析学(analysis)。拉格朗日是仅次于欧拉的最大开拓者,在18世纪创立的主要分支中都有开拓性贡献。 1.变分法 这是拉格朗日最早研究的领域,以欧拉的思路和结果为依据,但从纯分析方法出发,得到更完善的结果。他的第一篇论文“极大和极小的方法研究”(Recherches sur la méthode demaximis et minimies)[2]是他研究变分法的序幕; 1760年发表的“关于确定不定积分式的极大极小的一种新方法”(Essai d'unenouvelle méthode pour déterminer les maxima et les minima desformules integrales indéfinies)[3]是用分析方法建立变分法的代表作。发表前写信给欧拉时,称此文中的方法为“变分方法”(themethod of variation)。欧拉肯定了,并在他自己的论文中正式将此方法命名为“变分法”(the calculus of variation)。变分法这个分支才真正建立起来。 拉格朗日方法是对积分进行极值化,函数y=y(x)待定。他不象欧拉和前人用改变极大或极小化曲线的个别坐标的办法,而是引进通过端点(x1,y1),(x2,y2)的新曲线y(x)+δy(x),δy(x)叫曲线y(x)的变分。J相应的增量△J按δy,δy′展开的一、二阶项叫一次变分δJ和二次变分δ2J。他用分析方法证明了δJ为零的必要条件就是欧拉方程 他达继续讨论了端点变动时的情况以及两个自变量的重积分的情况,使这个分支继续发展。1770年以后,拉格朗日达研究了被积函数f包含高阶导数的单重和多重积分时的情况,现在已发展成为变分法的标准内容。 2.微分方程 早在都灵时期,拉格朗日就对变系数常微分方程研究做出重大成果。他在降阶过程中提出了以后所称的伴随方程,并证明了非齐次线性变系数方程的伴随方程的伴随方程,就是原方程的齐次方程。他还把欧拉关于常系数齐次方程的结果推广到变系数情况,证明了变系数齐次方程的通解可用一些独立特解乘上任意常数相加而成;而且在知道方程的m个特解后,可以把方程降低m价。 在柏林时期,他对常微分方程的奇解和特解做出历史性贡献,在1774年完成的“关于微分方程特解的研究”(Sur les intégralesparticulieres des equations différentielles)[22]中系统地研究了奇解和通解的关系,明确提出由通解及其对积分常数的偏导数消去常数求出奇解的方法;还指出奇解为原方程积分曲线族的包络线。当然,他的奇解理论还不完善,现代奇解理论的形式是由G.达布(Darboux)等人完成的。 常微分方程组的研究在当时结合天体力学中的课题进行。拉格朗日在1772年完成的“论三体问题”(Essai sur le problémedes trois corps)[8]中,找出了三体运动的常微分方程组的五个特解:三个是三体共线情况;两个是三体保持等边三角形;在天体力学中称为拉格朗日平动解。他同拉普拉斯一起完善的任意常数变异法,对多体问题方程组的近似解有重大作用,促进了摄动理论的建立。 拉格朗日是一阶偏微分方程理论的建立者,他在1772年完成的。“关于一阶偏微分方程的积分”(Sur l'integration des équationau differences partielles du premier order)[21]和1785年完成的“一阶线性偏微分方程的一般积分方法”(Méthode génèrale pourintégrer les equations partielles du premier order lorsque cesdifferences ne sont que linèaires)[23]中,系统地完成了一阶偏微分方程的理论和解法。 他首先提出了一阶非线性偏微分方程的解分类为完全解、奇解、通积分等,并给出它们之间的关系。还对形如 的非线性方程,化为解线性方程 后来又进一步证明了解线性方程Pp+Qq=R(P,Q,R为x,y,z的函数)(5)与解等价,而解(6)式又与解常微分方程组等价。(5)式至今仍称为拉格朗日方程。有趣的是,由上面已可看出,一阶非线性偏微分方程,可以化为解常微分方程组。但拉格朗日自己却不明确,他在1785年解一个特殊的一阶偏微分方程时,还说不能用这种方法,可能他忘记了自己在1772年的结果。现代也有时称此方法为拉格朗日方法,又称为柯西(Cauchy)的特征方法。因拉格朗日只讨论两个自变量情况,在推广到n个自变量时遇到困难,而后来由柯西在1819年克服。 3.方程论 18世纪的代数学从属于分析,方程论是其中的活跃领域。拉格朗日在柏林的前十年,大量时间花在代数方程和超越方程的解法上。 他在代数方程解法中有历史性贡献。在长篇论文“关于方程的代数解法的思考” (Réflexions sur le resolution algébrique desequations,《全集》Ⅲ, pp 205—421)中,把前人解三、四次代数方程的各种解法,总结为一套标准方法,而且还分析出一般三、四次方程能用代数方法解出的原因。三次方程有一个二次辅助方程,其解为三次方程根的函数,在根的置换下只有两个值;四次方程的辅助方程的解则在根的置换下只有三个不同值,因而辅助方程为三次方程。拉格朗日称辅助方程的解为原方程根的预解函数(是有理函数)。他继续寻找5次方程的预解函数,希望这个函数是低于5次的方程的解,但没有成功。尽管如此,拉格朗日的想法已蕴含着置换群概念,而且使预解(有理)函数值不变的置换构成子群,子群的阶是原置换群阶的因子。因而拉格朗日是群论的先驱。他的思想为后来的N.H.阿贝尔(Abel)和E.伽罗瓦(Galois)采用并发展,终于解决了高于四次的一般方程为何不能用代数方法求解的问题。 拉格朗日在1770年还提出一种超越方程的级数解法。设p为方程,这就是后来在天体力学中常用的拉格朗日级数。他自己没有讨论收敛性,后来由柯西求出此级数的收敛范围。 4.数论 拉格朗日到柏林初期就开始研究数论,第一篇论文“二阶不定问题的解”(Sur la solution des problémès in détèrminésdu seconde degrés[14]和送交都灵《论丛》的“一个算术问题的解”(Solution d'un problème d'arithmetique)[15]中,讨论了欧拉多年从事的费马(Fermat)方程x2-Ay2=1(x,y,A为整数),(9) 不定问题解的新方法”(Nouvelle méthode pour resoudveles problèmes indéteminés en nombres entiers)[16]中得到更一般的费马方程x2-Ay2=B(B也为整数)(10)的解。还讨论了更广泛的二元二次整系数方程ax2+2bxy+cy2+2dx+2ey+f=0,(11)并解决了整数解问题。 拉格朗日还在1772年的“一个算术定理的证明”(De monstration d'un théorème d'arthmétique,《文集》Ⅲ,pp。189—201)中,把欧拉40多年没有解决的费马另一猜想“一个正整数能表示为最多四个平方数的和”证明出来。在1773年发表的“质数的一个新定理的证明”(Démonstation d'un theorem nouveau concernant les nombres premiers)[17]中,证明了著名的定理:n是质数的充要条件为(n-1)!+1能被n整除。 拉格朗日不仅有大量成果,还在方法上有创新。如在证明(9)式研究”(Recherches d'arithmétiques,《文集》Ⅲ,pp。695—795)中,研究(11)式解时采用的方法和结果,是二次型理论的基本文献。 5.函数和无穷级数 同18世纪的其他数学家一样,拉格朗日也认为函数可以展开为无穷级数,而无穷级数则是多项式的推广。他还试图用代数建立微积分的基础。在他的《解析函数论……》(《文集》Ⅸ)中,书名上加的小标题“含有微分学的主要定理,不用无穷小,或正在消失的量,或极限与流数等概念,而归结为代数分析艺术”,表明了他的观点。由于迥避了极限和级数收敛性问题,当然就不可能建立真正的级数理论和函数论,但是他们的一些处理方法和结果仍然有用,他们的观点也在发展。 拉格朗日就在《解析函数论……》中,第一次得到微分中值定理(书中第六章)f(b)-f(a)=f′(c)(b-a)(a≤c≤b),(12)后面并用它推导出泰勒(Taylor)级数,还给出余项Rn的具体表达式(第二十章)Rn就是著名的拉格朗日余项形式。他还着重指出,泰勒级数不考虑余项是不能用的。虽然他还没有考虑收敛性,甚至各阶导数的存在性,但他强调Rn要趋于零。表明他已注意到收敛问题。 他同欧拉、达朗贝尔等在任意函数能否表为三角级数的长期争论,虽未解决,但为以后三角级数理论的建立打下了基础。 最后要提一下他在《师范学校数学基础教程》中,提出了著名的拉格朗日内插公式 直到现在计算机计算大量中点内插时仍在使用。另外在求多元函数相对极大极小及解微分方程中的拉格朗日任意乘子法,至今也在用。 除了对数学分析在18世纪建立的主要分支有开拓性贡献外,他对严格化问题也开始注意。尽管回避了极限概念,但他仍承认可以在极限基础上建立微积分(《文集》Ⅰ,p.325)。但正是对严格化重视不够,所建立的分支到一定阶段就很难深入。这可能是他晚年研究工作少的原因。他在1781年9月21日给达朗贝尔的信中说:“在我看来,似乎(数学)矿井已挖掘很深了,除非发现新矿脉,否则势必放弃它…。”(《文集》XⅢ368)这说出了他和其他同事们的心情。事实表明,19世纪在建立数学分析严格基础后,数学更迅速地发展。 分析力学的创立者 牛顿的力学理论仍用几何方法讨论。到18世纪中期,欧拉和达朗贝尔开始用分析方法,而拉格朗日在使力学分析化方面最出色,他在1788年出版的《分析力学》一书,就是分析力学这门学科建立的代表作。他一生的全部力学论文以及同时代人的力学贡献,都归纳到这部著作中。他的研究目的是使力学成为数学分析的分支。他在《分析力学》的序言中说:“…我在其中阐明的方法,既不要求作图,也不要求几何的或力学的推理,而只是一些按照一致而正规的程序的代数(分析)运算。喜欢分析的人将高兴地看到,力学变成了它的一个新分支,并将感激我扩大了它的领域。”实际情况正是这样。 拉格朗日在这方面的最大贡献是把变分原理和最小作用原理具体化,而且用纯分析方法进行推理,成为拉格朗日方法。 他首先引入广义坐标概念,故广义坐标又称为拉格朗日坐标。一个力学系统可用有限个坐标qj(j=1,2,…,N)表示;qj= dqj/dt为相应的广义速度。力学系统总动能T(拉格朗日称之为活力)表为qj·qj和时间t的函数后,定义为作用,最小作用原理成为δI=0。拉格朗日用变分法讨论δI=0时,导出了力学系统的运动方程为其中Qj为力学系统受到的作用力在广义坐标中的表达式,称为广义力。如力为保守的,则存在势函数V,(16)式成为(16)或(17)式就是第二类拉格朗日方程。后来S.D.泊松(Poisson)等引入函数L就取名为拉格朗日函数。 拉格朗日还把这些方法用于研究质点组,刚体和流体。在流体力学中讨论流体内各点的运动方法仍称为拉格朗日方法。 最后收集到《文集》中的《分析力学》是第二版,共分两卷,785页。第一卷中一半讲述“静力学”,主要讨论质点组和流体的平衡问题。从分析静力学原理开始,讨论了质点组和流体的平衡条件,并用于研究行星的形状。第一卷后半和第二卷全部讨论“动力学”。 动力学部分共分为十三章,前四章讲述动力学原理和建立质点系统运动方程的拉格朗日方法,包括(16),(17)式的推导以及运动的一般性质。第五章“用任意常数变化解动力学问题的一般近似方法”中,把他在微分方程解法中的任意常数变异法用于解动力学方程。后面讨论了一阶近似的求积方法。第七章“关于能看作质点的自由物体系统在引力作用下的运动”主要讲天体力学的基本问题。第八、九章讨论不动中心吸引问题和刚体动力学。第十章讨论地球自转和月球天平动。最后三章讨论流体动力学基本问题,作为拉格朗日方法的应用。 拉格朗日创立分析力学使力学发展到新的阶段。拉格朗日方程(16),(17)式推广了牛顿第二运动定律;使得在任意坐标系下有统一形式的运动方程,便于处理各种约束条件等优点,至今仍为动力学中的最重要的方程。在《分析力学》第二版印出(第二卷1816年)后不久,W.R.哈密顿(Hamilton)于1834年提出广义动量并建立哈密顿正则方程,又同K。G。雅可比(Jacobi)一起建立哈密顿-雅可比方法(1837)后,分析力学正式奠基建成,很快用到各学科领域。 天体力学的奠基者 天体力学是在牛顿发表万有引力定律(1687)时诞生的,很快成为天文学的主流。它的学科内容和基本理论是在18世纪后期建立的。主要奠基者为欧拉,A.C.克莱罗(Clairaut)、达朗贝尔、拉格朗日和拉普拉斯。最后由拉普拉斯集大成而正式建立经典天体力学。拉格朗日一生的研究工作中,约有一半同天体力学有关,但他主要是数学家,他要把力学作为数学分析的一个分支,而又把天体力学作为力学的一个分支对待。虽然如此,他在天体力学的奠基过程中,仍有重大历史性贡献。 首先在建立天体运动方程上,拉格朗日用他在分析力学中的原理和(16),(17)式,建立起各类天体的运动方程。其中特别是根据他在微分方程解法的任意常数变异法,建立了以天体椭圆轨道根数为基本变量的运动方程,现在仍称作拉格朗日行星运动方程,并在广泛应用,此方程对摄动理论的建立和完善起了重大作用,方程在1780年获巴黎科学院奖的论文“彗星在行星作用下的摄动理论研究”(Recherches sur la théorie des perturbations queles comètes peuvent éprouver par l'action des planètes)[13]中给出,得到达朗贝尔和拉普拉斯的高度评价。另外在一篇有关三体问题的获奖文章中[8],把三体问题的运动方程组第一次降到七阶。 在天体运动方程解法中,拉格朗日的重大历史性贡献是发现三体问题运动方程的五个特解[8],即拉格朗日平动解。其中两个解是三体围绕质量中心作椭圆运动过程中,永远保持等边三角形。他的这个理论结果在100多年后得到证实。 1907年2月22日,德国海德堡天文台发现了一颗小行星[后来命名为希腊神话中的大力士阿基里斯(Achilles),编号588],它的位置正好与太阳和木星形成等边三角形。到1970年前,已发现15颗这样的小行星,都以希腊神话中特洛伊(Troy)战争中将帅们的名字命名。有9 颗位于木星轨道上前面60°处的拉格朗日特解附近,名为希腊人(Greek)群;有6颗位于木星轨道上后面60°处的解附近,名为脱罗央(Trojan)群。1970年以后又继续发现40多颗小行星位于此两群内,其中我国紫金山天文台发现四颗,但尚未命名。至于为什么在特解附近仍有小行星,是因为这两个特解是稳定的。1961年又在月球轨道前后发现与地月组成等边三角形解处聚集的流星物质,是拉格朗日特解的又一证明。至今尚未找到肯定在三个拉格朗日共线群(三体共线情况)处附近的天体,因为这三个特解不稳定。另外,拉格朗日在一阶摄动理论中也有重要贡献,提出了计算长期摄动方法(《文集》Ⅴ,pp.125—414),并与拉普拉斯一起提出了在一阶摄动下的太阳系稳定性定理(参见《世界著名科学家传记·天文学家Ⅰ》中“拉普拉斯”条)。此外,拉格朗日级数(8)式在摄动理论中有广泛应用。 在具体天体的运动研究中,拉格朗日也有大量重要贡献,其中大部分是参加巴黎科学院征奖的课题。他的月球运动理论研究论文多次获奖。1763年完成的“月球天平动研究”(Recherches sur laLibration de la lune)[6]获1764年度奖,此文较好地解释了月球自转和公转的角速度差异,但对月球赤道和轨道面的转动规律解释得不够好。后来在1780年完成的论文解决得更好(参见《文集》Ⅴ,pp.5—123)。获1772年度奖的就是著名的三体问题论文[8],也是针对月球运动研究写出的。获1774年度奖的论文为“关于月球运动的长期差”(Sur l’equation séculaire de la lune)[9],其中第一次讨论了地球形状和所有大行星对月球的摄动。关于行星和彗星运动的论文也有两次获奖。1776年度获奖的是他在1775年完成的三篇论文[10,11,12,]其中讨论了行星轨道交点和倾角的长期变化对彗星运动的影响。1780年度的获奖论文就是提出著名的拉格朗日行星运动方程的那篇[13]。获1766年度奖的论文是“木星的卫星运动的偏差研究…”(Recherches sur les inégualités des satellites de Jupiter…)[7],其中第一次讨论了太阳引力对木星的四个卫星运动的影响,结果比达朗贝尔的更好。 拉格朗日从事的天体力学课题还有很多,如在柏林时期的前半部分,还研究了用三个时刻的观测资料计算彗星轨道的方法(《文集》Ⅳ,pp.439—532),所得结果成为轨道计算的基础。另外他还得到了一种力学模型——两个不动中心问题的解,这是欧拉已讨论过的,又称为欧拉问题。是拉格朗日推广到存在离心力的情况,故后来又称为拉格朗日问题(《文集》Ⅱ,pp.67—121)。这些模型现在仍在应用。有人用作人造卫星运动的近似力学模型。此外,他在《分析力学》中给出的流体静力学的结果,后来成为讨论天体形状理论的基础。 总的看来,拉格朗日在天体力学的五个奠基者中,所做的历史性贡献仅次于拉普拉斯。他创立的“分析力学”对以后天体力学的发展有深远的影响。 结束语拉格朗日是18世纪的伟大科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献。但他主要是数学家,拿破仑曾称赞他是“一座高耸在数学界的金字塔”,他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用.使数学的独立性更为清楚,而不仅是其他学科的工具.同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展.由于历史的局限,严密性不够妨碍着他取得更多的成果. 拉格朗日的著作非常多,未能全部收集.他去世后,法兰西研究院集中了他留在学院内的全部著作,编辑出版了十四卷《拉格朗日文集》,由J.A.塞雷(Serret)主编,1867年出第一卷,到1892年才印出第十四卷.第一卷收集他在都灵时期的工作,发表在《论丛》第一到第四卷中的论文;第二卷收集他发表在《论丛》第四、五卷及《都灵科学院文献》第一、二卷中的论文;第三卷中有他在《柏林科学院文献》 1768—1769年, 1770—1773年发表的论文; 第四卷刊有他在《柏林科学院新文献》1774—1779年, 1781年,1783年发表的论文;第五卷刊载上述刊物1780—1783年,1785—1786年,1792年,1793年,1803年发表的论文;第六卷载有他未在巴黎科学院或法兰西研究院的刊物上发表过的文章;第七卷主要刊登他在师范学校的报告;第八卷为1808年完成的《各阶数值方程的解法论述及代数方程式的几点说明》(Traité des équations numériquesde tous les degrés, avec des notes sur plusieurs points de lathéorie des equations algébriques)一书;第九卷是1813年再版的《解析函数论,含有微分学的主要定理,不用无穷小,或正在消失的量,或极限与流数等概念,而归结为代数分析艺术》一书;第十卷是1806年出版的《函数计算教程》一书;第十一卷是1811年出版的《分析力学》第一卷,并由J.贝特朗(Bertrand)和G.达布(Darboux)作了注释;第十二卷为《分析力学》的第二卷,仍由上述二人注释,此二卷书后来在巴黎重印(1965);第十三卷刊载他同达朗贝尔的学术通讯;第十四卷是他同孔多塞,拉普拉斯,欧拉等人的学术通讯,此二卷都由L.拉朗(Lalanne)作注释.还计划出第十五卷,包含1892年以后找到的通讯,但未出版.
百度百科中的词条内容仅供参考,如果您需要解决具体问题(尤其在法律、医学等领域),建议您咨询相关领域专业人士。 本词条对我有帮助
如想投诉,请到;如想提出意见、建议,请到。
|