词条 | 亚纯函数 |
释义 | 定义亚纯函数(meromorphic function)是在区域D上有定义,且除去极点之外处处解析的函数。 举例说明比如有理函数就是在扩充复平面上的亚纯函数,它是两个多项式的商而Q(z)的零点是R(z)的极点,即R(z)有有限多个极点,∞点是R(z)的极点或可去奇点。复平面上不是有理函数的亚纯函数称为超越亚纯函数。 例如ctg( z)就是超越亚纯函数,它以kπ为全部极点,超越亚纯函数一定有无限多个极点。有理函数可以分为部分分式,即其中{ak}是R( z )的全部极点 ,Pk( u )是多项式 , 当∞点是l0阶极点时,P0(z)是l0阶多项式 。 扩展知识复平面上的超越亚纯函数也有一个部分分式分解定理 , f(z)是以{ak}为极点集的超越亚纯函数,设f(z)在极点ak处罗朗展式的主部为,Pk(u)是一个多项式,于是f(z)可表作:中g(z)是整函数 ,hk(z)是适当选取的多项式。 对于超越亚纯函数有一个类似毕卡定理的结果 :f(z)是超越亚纯函数,则最多除去两个例外值外 ,对所有其他值W, f(z)-W一定有无穷多个零点。 在复分析中,一个复平面的开子集D上的亚纯函数是一个在D上除一个孤立点集合之外的区域全纯的函数,那些孤立点称为该函数的极点。这样的函数有时称为正则函数或者在D上正则。 每个D上的亚纯函数可以表达为两个全纯函数的比(其分母不恒为0):极点也就是分母的零点。 Image:Gamma abs.png Γ函数在整个复平面上亚纯直观的讲,一个亚纯函数是两个性质很好的(全纯)函数的比。这样的函数本身性质也很“好”,除了分式的分母为零的点,那时函数的值为无穷。 从代数的观点来看,如果D是一个连通集,则亚纯函数的集合是全纯函数的整域的分式域。 |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。