词条 | 旋度 |
释义 | 旋度的数学定义设有向量场 A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k 在坐标轴上的投影分别为 δR/δy - δQ/δz , δP/δz - δR/δx ,δQ/δx - δP/δy 的向量叫做向量场A的旋度,记作 rot A或curl A ,即 rot A=(δR/δy - δQ/δz )i+(δP/δz - δR/δx )j+(δQ/δx - δP/δy)k 式中的 δ 为偏微分(partial derivative)符号。 行列式记号 旋度rot A的表达式可以用行列式记号形式表示: 若 A=Ax·i+Ay·j, 则rotA=(dAy/dx)i-(dAx/dy)j 若A=Ax·i+Ay·j+Az·k 则rotA=(dAz/dy-dAy/dz)i+(dAx/dz-dAz/dx)j+(dAy/dx-dAx/dy)k 为一向量。 旋度的物理意义设想将闭合曲线缩小到其内某一点附近,那么以闭合曲线L为界的面积也将逐渐减小.一般说来,这两者的比值有一极限值,记作即单位面积平均环流的极限。它与闭合曲线的形状无关,但显然依赖于以闭合曲线为界的面积法线方向且通常L的正方向与规定要构成右手螺旋法则,旋度的重要性在于,可用通过研究表征矢量在某点附近各方向上环流强弱的程度,进而得到其单位面积平均环流的极限的大小程度。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。