词条 | 安东尼·奥古斯丁·库尔诺 |
释义 | 安东尼·奥古斯丁·库尔诺(Antoine Augustin Cournot)是法国数学家、经济学家和哲学家,数理统计学的奠基人。库尔诺最先力图用数学方法解决经济问题,是数理经济学的创始人之一。他指出统计学的目的是协调各项观察,以确定除去偶然因素的影响之外的数字关系和显示出正常原因的作用。 中文名:安东尼·奥古斯丁·库尔诺 外文名:Antoine Augustin Cournot 国籍:法国 出生地:法国格雷 出生日期:1801年8月28日 逝世日期:1877年3月31日 职业:数学家,哲学家和经济学家 毕业院校:巴黎高等师范学校 主要成就:数理统计学奠基人 代表作品:《关于财富理论之数学原则的研究》和《财富理论原理》等 人物生平库尔诺的人生道路并不坎坷。他受教于著名的巴黎高等师范学校,获巴黎大学博士学位。他曾在巴黎大学和里昂大学任教,担任格勒诺布尔学院院长,成为法国勋级会荣誉军团成员,并被任命为巴黎的教育巡视员。尽管他视力一直很差,晚年几近失明,但生活还是安逸的。他在数学、科学 哲学和历史哲学、经济学方面都有造诣。他在今天的名声主要来自经济学。 然而,库尔诺生不逢时。当时法国学术界关注的是对大革命的争论以及日益增长的社会主义思潮。圣西门和傅立叶的空想社会主义,蒲鲁东对私有制的抨击,路易·布朗的工人合作思想,这些都是人们关心争论的话题。库尔诺的思想不是时代的主旋律,同时,库尔诺性情忧郁,性格孤僻,是个内向型的人,也不关心自己的作品是否有吸引力,没有努力引起同时代人的关注,至死仍然默默无闻。也就在他临终前,他的作品才引起杰文斯等名家的注意,认识到他的著作的深远意义。 主要著作《关于财富理论之数学原则的研究》 (Recherches sur les principes mathematiques de la theorie des richesses, 1838)。 《财富理论原理》(1863)《经济学说概要评论》 (1877) 经济学贡献最主要的贡献在于下列几方面的论述: 供给和需求的功能和在独家垄断、两家垄断和完全竞争情况下确立的平衡;赋税的转变;国际贸易问题等。 库尔诺最早提出需求量是价格的函数这个需求定理,并建立了垄断模型和分析寡头的双头模型,直到今天双头模型(称为库尔诺模型)仍然是标准教科书中的重要内容。库尔诺至今被重视的原因还在于他用数学方法分析这些问题。以后的经济学家高度评价了他的这种贡献,认为他对已有的,但形态模糊的经济概念和经济命题给予严密的数学表述。他的分析方法强有力地促使经济学从文字的叙述转向形式逻辑的和数字的表达。20世纪初的著名英国经济学家埃奇沃思指出,库尔诺的论著“是以数学形式把经济科学里的某些高度概括的命题,陈述得最好的。”现代经济学家还指出,库尔诺是最早用博弈论思想分析经济问题的先驱者,他的双头模型就成功地运用了博弈论。 数理经济学的产生首先比较系统地运用数学的是1838年法国安东尼·奥古斯丁·库尔诺的《财富理论数学原理的研究》,这书常被当做数理经济学的开端;只是由于使用当时经济理论权威们不熟悉的数学推理而无人问津,直到40年后受到英国W.S.杰文斯和法国L.瓦尔拉斯的高度推崇,才知名于世。现在都把19世纪70年代杰文斯和瓦尔拉斯极力提倡并且实行以数学推理为经济理论研究的唯一方法,当做数理经济学和数理学派的正式形成,而把此后到20世纪初,英国F.Y.埃奇沃思(1845~1926)、A.马歇尔、美国I.费希尔(一译费雪,1867~1947)、意大利V.帕累托等在经济学里进一步运用数学推理当做这个学科和学派的发展。 库尔诺并没有用过“数理经济学”的名称,他采用的书名用意不仅在于 理论研究,而且在研究中要运用数学分析的形式和符号。他认为在财富理论中运用数学分析不是非导向数学计算不可;光靠理论,即使运用符号和公式也确定不了价值的数值;但运用数学分析还要探索不能用数字表现的数量之间的关系和不能用代数表现的函数之间的关系;即使不需要精确数字,只要能更简明地陈述问题、开辟研究途径、避免脱离主题,数学也有其有用之处。仅仅因为部分读者不熟悉或怕用错而拒绝数学分析,是荒谬的。他批评D.李嘉图在企图精确地解决抽象问题时,由于用算术计算代替无法避免的代数问题而陷于冗长迂赘。 杰文斯1862年提出的论文标题《略论政治经济学的一般数学理论》是数理经济学的最早名称,到1879年他的主要著作《政治经济学理论》一书再版时,附上1711年以来的“数学的经济的”文献目录,等于公开宣称数理经济学的存在。他认为经济学要成为一门科学必须是一门数学的科学,简单原因就是研究数量和数量之间的复杂关系,必须进行数学推理;即使不用代数符号,也不会减少这门科学的数学性质。 瓦尔拉斯在1874年出版的《纯粹政治经济学纲要》一书中认为,纯粹经济学实质上就是在假设完全自由竞争制度下,关于价格决定的理论;价格,即商品用货币表示的交换价值,具有自然现象的性质,因为它既不取决于一个买者或一个卖者的意志,也不取决于两者的协议,而是因为商品具有数量有限和有用的自然条件,只要有交换就会有交换价值。交换价值是个可计量的数量,正是一般数学的研 究对象,所以交换价值的理论应该是数学的一个分支;数学方法并不是实验方法而是推理方法,经济学的纯粹理论也象“物理-数学的”科学一样,从经验的真实概念中抽象出理想的概念作为基础,可以超出经验范围进行推理,在建成这个科学后再回到实际,也不是为了验证,而是为了应用。 费希尔在1897年为库尔诺的著作《财富理论数学原理的研究》英译本作序时才正式使用数理经济学(原意数学的经济学)的名称,并且把杰文斯的文献目录增补到当时。但是1927年译本再版时,费希尔认为数学方法在经济和统计研究中的应用如此普遍,其价值已很少受到怀疑,所以未再继续增补目录。实际上数理经济学和经济学并未合成为一体,目前还有人在经济学研究中坚持不用和反对运用数学推理;同时,经济学也还有不能运用数学方法的领域。 古诺模型古诺模型是由法国数学家、哲学家和经济学家安东尼·奥古斯丁·库尔诺(Antoine Augustin Cournot, 1807-1877)在1838年出版的《财富理论的数学原理研究》一书中首先提出来的。 古诺模型 古诺模型(The Cournot Model),又称古诺双寡头模型(Cournot duopoly model),或双寡头模型(Duopoly model),古诺模型是早期的寡头模型。古诺模型是一个只有两个寡头厂商的简单模型,该模型也被称为“双头模型”。古诺模型的结论可以很容易地推广到三个或三个以上的寡头厂商的情况中去。 他是第一位把数学方法运用到经济学分析当中的经济学家。因此常被学界认为是数理经济学的鼻祖。同时他也是边际效用价值论的先驱者之一。在生前他的理论没有受到重视,他的开创性工作直到他去世后,杰文斯、马歇尔和费雪继续他的工作时才引起重视。库尔诺是第一位提出完全垄断、双头垄断和完全竞争的精确数学模型的经济学家。 古诺模型假定一种产品市场只有两个卖者,并且相互间没有任何勾结行为,但相互间都知道对方将怎样行动,从而各自怎样确定最优的产量来实现利润最大化,因此,古诺模型又称为双头 安东尼·奥古斯丁·库尔诺 垄断理论。 古诺模型分析的是两个出售矿泉水的生产成本为零的寡头垄断厂商的情况。古诺模型的假定是:市场上有A、B两个厂商生产和销售相同的产品,它们的生产成本为零;它们共同面临的市场的需求曲线是线性的,A、B两个厂商都准确地了解市场的需求曲线;A、B两个厂商都是在已知对方产量的情况下,各自确定能够给自己带来最大利润的产量,即每一个厂商都是消极地以自己的产量去适应对方已确定的产量。 古诺模型的价格和产量决定可用图8-16来说明。 博弈论安东尼·奥古斯丁·库尔诺的古诺模型在博弈论中广泛应用。对博弈论的零星研究可以追溯到18世纪甚至更早,瓦德格拉夫(Waldegrave)1713年就提出了已知最早的双人博弈的极小化极大混合策略解,伯特兰德(Bertrand)在1883年提出了寡占市场价格竞争的博弈模型。而在现代经济学和博弈论经常引述的经典文献当中,古诺模型无疑是最早包含博弈思想的经典文献。古诺在1838年关于两个寡头通过产量决策进行竞争的模型是早期博弈论研究的起点。可惜的是,库尔诺并没有使用“博弈(Game)”一词,并且在后来的研究中也没有使用博弈的方法研究经济问题,更没有从模型中进一步发展出一般的经济理论。 虽然从19世纪中期开始就有关于博弈问题的零星研究,并且出现过许多伟大人物的伟大开创,比如像1881年埃其沃斯(Edgeworth)提出的“合同曲线”概念,是后来博弈论重要解概念“核”的特例;1883年伯特兰德提出的通过价格进行博弈的寡头竞争模型,与古诺模型有奇趣同工之妙。奇默罗在1913年提出的关于象棋博弈的定理是博弈论的第一个定理,等等这些,为博弈论的系统研究打下了坚实的基础。但是使博弈论真正的成为关注的焦点是以冯·诺依曼和摩根斯坦1944年出版的《博弈论与经济行为》为标志,使博弈论真正成为一门研究学科。博弈论开始迅速蓬勃发展起来,涌现了像纳什(F. J. Nash)、海萨尼(J.Harsanyi)、塞尔滕(R.Selten)、弗得伯格(D.Fudenberg)和泰勒尔(J.Tirole)等博弈论专家,并且他们很好的把博弈论应用于经济学中。1994年10月11日,瑞典皇家学院把当年的诺贝尔经济学奖授予了美国普林斯顿大学纳什(F. J. Nash)和加利福尼亚大学海萨尼(J.Harsanyi)、德国波恩大学的塞尔滕(R.Selten)三位研究者。 学者语录“巧合”它的最著名的定义是哲学家奥古斯丁·库尔诺奥古斯丁·库尔诺(Augustin Cournot,1801~1877),法国经济学家、数学家和哲学家。——译注所下的。他认为“巧合是两组无联系的原因的相遇”。我们可以通过库尔诺所举的例子来阐明这一构想:饥饿令我走出家门到面包店去,同时,雨水使得正在盖屋顶的工人手中的一片瓦滑落下来,这个瓦片掉到了我的头上。这件事情是出于 “巧合”,因为我在街上的原因和瓦片滑落的原因之间没有关联性。然而, 这个定义反映了无关联性概念的定义本身也难以得到明确。在一个绝对决定论的领域里,绝对的无关联性是否存在呢?(在一个起源于宇宙初期并遵守无缺陷的决定论的宇宙观中,没有任何一个粒子是与其他粒子互不相关的。) 人物评价安东尼·奥古斯丁·古诺是第一位打入经济学界的真正数学家。1833年,古诺开始出任法国里昂大学的数学教授,还曾担任过数学学院的院长职务。他有两位几个世纪前是、再过几个世纪之后仍然是大名鼎鼎的数学家老师,一位是拉普拉斯(Laplace),另一位是泊松(Poisson)。他的第一本学术著作写的是概率论,而接下来马上就将研究对象由数学转移到了经济领域,并运用其娴熟的数学分析方法于1838年写出了他的第一本经济类学术专著《财富理论的数学原理之研究》(Recherches sur 1es principes mathematiques de 1a theorie des richesses)。 从而后人们就把1838年定为数理经济学派崛起的年头。 这是一本研究水平极高的著作,超越了当时研究经济学的学者的普遍水平,又加之是法文版,因此,没有引起人们太多的注意。但一经人们发现,便一致被推崇为数理经济学派的先驱者。至于是被哪一位经济学家先发现的,有两种说法:一说是直到英国的杰文斯最终发现了这本古诺的著作,并将其介绍给了同行们;另有一说是其法国同胞、且其父与古诺同年同窗同名又几乎同教名的勒翁·瓦尔拉斯在成名之后,将古诺的早年著作向大家作了介绍。 库尔诺加总定律:(价格自弹性+1)与价格互弹性的加权和为零,权数是消费支出份额。由于库尔诺的超前性,大多数研究经济的人搞不懂他的着作,使库尔诺大为失望。直到25年后的1863年才出版了他的第二本经济学着作《财富理论之原理》(Principes de la théorie des richesses),使用所谓的文字语言专门来解释他的第一本着作。 库尔诺的伟大贡献在于他首先建立了正确的市场与价格理论,并且明确指出了根据年度资料建立起的消费函数本身是经验性的而非先验性的。因此,库尔诺又被认为是计量经济学的先驱。库尔诺对现代经济学的贡献直到其死后80年才被全面地肯定。 数理经济学派对经济学发展的贡献是不言而喻的,然而几乎所有的理论与实际应用之间都有着不易跨越的鸿沟。一般而言,所有的经济理论特别是数理经济学理论,都会设定许多的前提条件,理论与模型都是在这些前提条件之下展开的。不同的前提条件代表着研究者认识事物的不同角度、研究对象的不同侧重以及研究方法的不同要求,因而也就会导出不同的结论和结果。 而这正是数理经济学派饱受攻击的地方,因为有许多的理论的前提条件与现实都存在着明显的出入。然而,经济学研究正是这样一点一滴地取得着进步。先是假设一些严格的条件,得出应用性较差的较强的结论;然后逐一地将条件减弱再得出应用性较好的较弱的结论。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。