词条 | 希波克拉蒂月牙问题 |
释义 | 理解以直角三角形两直角边为直径向外作两个半圆,以斜边为直径向内作半圆,则三个半圆所围成的两个月牙(希波克拉底月牙)面积的和等于该直角三角形的面积。这个定理叫作希波克拉底的“月牙定理”(Hippocrate's Theorem)。 推理题1以AB为直径作一半圆,取弧AB一点C,分别以AC、CB为直径作半圆,两个半圆与大的半圆的不重合部分即为新月 因为直径所对圆周角为直角,三角形ABC为直角三角形, 由勾股定理AC^2+BC^2=AB^2 S(AC)=(1/2)πAC^2; S(BC)=(1/2)πBC^2; S(AB)=(1/2)πAB^2 所以S(AC)+S(BC)=S(AB) 两边同减去公共部分即得新月部分面积和等于直角三角形的面积 其中S(AC)表示以AC为直径的半圆面积,依此类推例题有一个著名的希波克拉蒂月牙问题.如图:以AB为直径作半圆,C是圆弧上一点,(不与A、B重合),以AC、BC为直径分别作半圆,围成两个月牙形1、2(阴影部分).已知直径AC为4,直径BC为3,直径AB为5. (1)分别求出三个半圆的面积; (2)请你猜测:这两个月牙形的面积与三角形ABC的面积之间有何等量关系 解答1)2.5*2.5*3.14\\2=9.8125(直径5的) 1.5*1.5*3.14\\2=3.5325(直径3的) 2*2*3.14\\2=6.28(直径4的)(2)面积是一样的,都是6 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。