请输入您要查询的百科知识:

 

词条 无限循环小数化为分数
释义

简介

将无限小数化为分数,有一套简单的公式。使其轻松表示出来。

循环节

例如:0.121212……

循环节为12。

公式

第一种:

这个公式必须将循环节的开头放在十分位。若不是可将原数乘10^x(x为正整数)

就为:12.121212……-0.121212……=12

100倍 - 1倍 =99 (99和12之间一条分数线)

此公式需用两位数字,其中两位数差出一个循环节。

再举一个例子:0.00121212……

公式就变为:1212.121212……-12.121212……=1200

100000 倍 - 1000倍 =99000 (1200与99000之间一条分数线)

第一行为原数的的倍数10^x(x为正整数),第二行为与原数的乘数,10^x(x为正整数)。

第二种:

如,将3.305030503050.................(3050为循环节)化为分数。

解:

设:这个数的小数部分为a,这个小数表示成3+a

10000a-a=3053

9999a=3053

a=3053/9999

算到这里后,能约分就约分,这样就能表示循环部分了。再把整数部分乘分母加进去就是

(3×9999+3053)/9999

=33050/9999

还有混循环小数转分数

如0.1555.....

循环节有一位,分母写个9,非循环节有一位,在9后添个0

分子为非循环节+循环节(连接)-非循环节+15-1=14

14/90

约分后为7/45

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 9:15:17