词条 | 01背包 |
释义 | 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。 01背包问题问题描述求出获得最大价值的方案。 注意:在本题中,所有的体积值均为整数。 算法分析对于背包问题,通常的处理方法是搜索。 用递归来完成搜索,算法设计如下: function Make( i {处理到第i件物品} , j{剩余的空间为j}:integer) :integer; 初始时i=m , j=背包总容量 begin if i=0 then Make:=0; if j>=wi then (背包剩余空间可以放下物品 i ) r1:=Make(i-1,j-wi)+v; (第i件物品放入所能得到的价值 ) r2:=Make(i-1,j) (第i件物品不放所能得到的价值 ) Make:=max{r1,r2} end; 这个算法的时间复杂度是O(2^n),我们可以做一些简单的优化。 由于本题中的所有物品的体积均为整数,经过几次的选择后背包的剩余空间可能会相等,在搜索中会重复计算这些结点,所以,如果我们把搜索过程中计算过的结点的值记录下来,以保证不重复计算的话,速度就会提高很多。这是简单的“以空间换时间”。 我们发现,由于这些计算过程中会出现重叠的结点,符合动态规划中子问题重叠的性质。 同时,可以看出如果通过第N次选择得到的是一个最优解的话,那么第N-1次选择的结果一定也是一个最优解。这符合动态规划中最优子问题的性质。 解决方案考虑用动态规划的方法来解决,这里的: 阶段是:在前N件物品中,选取若干件物品放入背包中; 状态是:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值; 决策是:第N件物品放或者不放; 由此可以写出动态转移方程: 我们用f[i,j]表示在前 i 件物品中选择若干件放在所剩空间为 j 的背包里所能获得的最大价值 f[i,j]=max{f[i-1,j-Wi]+Pi (j>=Wi), f[i-1,j]} 这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c的背包中”,此时能获得的最大价值就是f[v-c]再加上通过放入第i件物品获得的价值w。 这样,我们可以自底向上地得出在前M件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w] 算法设计如下: procedure Make; begin for i:=0 to w do f[0,i]:=0; for i:=1 to m do for j:=0 to w do begin f[i,j]:=f[i-1,j]; if (j>=w) and (f[i-1,j-w]+v>f[i,j]) then f[i,j]:=f[i-1,j-w]+v; end; writeln(f[m,wt]); end; 由于是用了一个二重循环,这个算法的时间复杂度是O(n*w)。而用搜索的时候,当出现最坏的情况,也就是所有的结点都没有重叠,那么它的时间复杂度是O(2^n)。看上去前者要快很多。但是,可以发现在搜索中计算过的结点在动态规划中也全都要计算,而且这里算得更多(有一些在最后没有派上用场的结点我们也必须计算),在这一点上好像是矛盾的。 事实上,由于我们定下的前提是:所有的结点都没有重叠。也就是说,任意N件物品的重量相加都不能相等,而所有物品的重量又都是整数,那末这个时候W的最小值是:1+2+2^2+2^3+……+2^n-1=2^n -1 此时n*w>2^n,动态规划比搜索还要慢~~|||||||所以,其实背包的总容量W和重叠的结点的个数是有关的。 考虑能不能不计算那些多余的结点…… 优化空间复杂度以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。 先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[v]呢?f[v]是由f[v]和f[v-c]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v-c]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c]保存的是状态f[v-c]的值。伪代码如下: for i=1..N for v=V..0 f[v]=max{f[v],f[v-c]+w}; 其中的f[v]=max{f[v],f[v-c]}一句恰就相当于我们的转移方程f[v]=max{f[v],f[v-c]},因为现在的f[v-c]就相当于原来的f[v-c]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[v]由f[v-c]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。 事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。 过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。 procedure ZeroOnePack(cost,weight) for v=V..cost f[v]=max{f[v],f[v-cost]+weight} 注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。 有了这个过程以后,01背包问题的伪代码就可以这样写: for i=1..N ZeroOnePack(c,w); 初始化的细节问题我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。 如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。 如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。 为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。 这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。 小结01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。 0-1背包问题可以定义如下:maximize subject to 装箱问题论述有一个箱子容量为V(正整数,0≤V≤20000),同时有n个物品(0小于n≤30),每个物品有一个体积(正整数)。要求从n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。 输入v,n,在输入n个物品。 输出箱子的剩余空间为最小。 Input: 24 一个整数,表示箱子容量 6 一个整数,表示有n个物品 8 接下来n行,分别表示这n个物品的各自体积。 3 12 7 9 7 Output: 0 一个整数,表示箱子剩余空间。 var v,n,i,j,k:longint; f:array[0..20000]of boolean; a:array[1..30]of longint; begin read(v,n); for i:=1 to n do read(a[i]); f[0]:=true; for i:=1 to n do for j:=v downto a[i] do if not f[j] and f[j-a[i]] then f[j]:=true; k:=v; while (k>1)and(not f[k]) do dec(k); writeln(v-k); end. 二次背包问题二次背包问题是背包问题的一种推广形式: maximize subject to
|
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。