请输入您要查询的百科知识:

 

词条 矮星
释义

原指本身光度较弱的星,现专指恒星光谱分类中光度级为V的星,即等同于主序星。光谱型为O、B、A的矮星称为蓝矮星(如织女一、天狼),光谱型为F、G的矮星称为黄矮星(如太阳),光谱型为K及更晚的矮星称为红矮星(如南门二乙星)。但白矮星、亚矮星、“黑矮星”则另有所指,并非矮星。物质处在简并态的一类弱光度恒星“简并矮星”也不属矮星之列。

概述

矮星(Dwarf star):像太阳一样的小主序星,如果是白矮星,就是像太阳一样的一颗恒星的遗核。棕矮星没有足够的物质进行熔化反应。

原指本身光度较弱的星﹐现专指恒星光谱分类中光度级为V的星﹐即等同于主序星。光谱型为O﹑B﹑A的矮星称为蓝矮星(如天狼星)﹐光谱型为F﹑G的矮星称为黄矮星(如太阳)﹐光谱型为K及更晚的矮星称为红矮星(如南门二乙星)。但白矮星﹑亚矮星﹑“黑矮星”则另有所指﹐并非矮星。物质处在简并态的一类弱光度恒星“简并矮星”也不属矮星之列。“黑矮星”则是理论上估计存在的天体﹐指质量大致为一个太阳质量或更小的恒星最终演化而成的天体﹐它处于冷简并态﹐不再发出辐射能﹔也有人专指质量不够大(小于约0.08个太阳质量)﹑已没有核反应能源的星体。

光度最弱的一类星系﹐其绝对星等M 为-8~-16等。有的矮星系是椭圆星系﹐也有的是I型不规则星系。这两种矮星系都是小的﹐成员星通常也不多。质量只有10~100太阳质量。不规则矮星系包含著大量闹行郧猢o并且包含著星族 I的恒星。椭圆矮星系是椭圆星系中质量小的星系。它们与球状星团很类似﹐二者的不同仅仅在于前者直径约为后者的10倍。在本星系群的40个星系中﹐就是20多个是椭圆矮星系﹐可见其数目之多。这种星系光度弱﹐所以在49999秒差距之外是看不到的。

棕矮星

棕矮星(Brown dwarf)是类恒星天体的一种,质量约为5至90个木星之间。与一般恒星不同,棕矮星由质量不足,其核心并不会融合氢原子来发光发热,无法成为主序星。但它们的内部及表面均呈对流状态,不同的化学物质并不会在内部分层存在。现时人们仍在研究棕矮星在过往是否曾经在某位置发生过核聚变,已知的是,质量大于13个木星的棕矮星可融合氘。

棕矮星原先被称为“黑矮星”,代表在宇宙间漂浮的类恒星天体或质量不足以发生核反应的天体。但“黑矮星”一词现时是指一些停止发光,并已死亡的白矮星。

早期的恒星模型指出,一个天体欲成为真恒星,必须拥有80个以上的木星质量,以产生核反应。“棕矮星”的理论最初于1960年代早期提出,指其数量可能比真恒星多,由于未能发光,要寻找也颇为困难。它们会释出红外线,可凭地面的红外线侦测器来侦测,但由提出至证实发现足足用了数十年。

近期的研究则指出,恒星能发光发热除取决于质量外,也包括其内含的化合物。一些棕矮星的质量达到90个木星仍不能点燃内部的氢。还有当一团星云塌缩时,除产生恒星外,也会产生不发光的棕矮星,其质量少于13个木星。

首个棕矮星于1995年得到证实,至今已有百多个。现时普遍认为棕矮星是银河系中数目最多的天体之一,较接近地球的棕矮星位于印第安座的epsilon星,该恒星拥有两颗棕矮星,距离太阳12光年。

白矮星

简介

白矮星(White Dwarf)是一种低光度、高密度、高温度的恒星。因为它的颜色呈白色、体积比较矮小,因此被命名为白矮星。

也有人认为,白矮星的前身可能是行星状星云.

白矮星属于演化到晚年期的恒星。恒星在演化后期,抛射出大量的物质,经过大量的质量损失后,如果剩下的核的质量小于1.44个太阳质量,这颗恒星便可能演化成为白矮星。对白矮星的形成也有人认为,白矮星的前身可能是行星状星云(是宇宙中由高温气体、少量尘埃等组成的环状或圆盘状的物质,它的中心通常都有一个温度很高的恒星──中心星)的中心星,它的核能源已经基本耗尽,整个星体开始慢慢冷却、晶化,直至最后“死亡”。

特征

白矮星具有这样一些特征:

1.体积小,它的半径接近于行星半径,平均小于103千米。

2.光度(恒星每秒钟内辐射的总能量,即恒星发光本领的大小)非常小,要比正常恒星平均暗103倍。

3.质量小于1.44个太阳质量。4.密度高达10^6~10^7克/厘米3,其表面的重力加速度大约等于地球表面重力加速度的10倍到104倍。假如人能到达白矮星表面,那么他休想站起来,因为在它上面的引力特别大,以致人的骨骼早已被自己的体重压碎了。

5.白矮星的表面温度很高,平均为1000℃。

6.白矮星的磁场高达105~107高低

目前人们已经观测发现的白矮星有1000多颗。天狼星(Sirius)的伴星是第一颗被人们发现的白矮星,也是所观测到的最亮的白矮星(8等星)。1982年出版的白矮星星表表明,银河系中有488颗白矮星,它们都是离太阳不远的近距天体。根据观测资料统计,大约有3%的恒星是白矮星,但理论分析与推算认为,白矮星应占全部恒星的10%左右。

白矮星是一种很特殊的天体,它的体积小、亮度低,但质量大、密度极高。比如天狼星伴星(它是最早被发现的白矮星),体积比地球大不了多少,但质量却和太阳差不多!也就是说,它的密度在1000万吨/立方米左右。

根据白矮星的半径和质量,可以算出它的表面重力等于地球表面的1000万-10亿倍。在这样高的压力下,任何物体都已不复存在,连原子都被压碎了:电子脱离了原子轨道变为自由电子。

白矮星是一种晚期的恒星。根据现代恒星演化理论,白矮星是在红巨星的中心形成的。

当红巨星的外部区域迅速膨胀时,氦核受反作用力却强烈向内收缩,被压缩的物质不断变热,最终内核温度将超过一亿度,于是氦开始聚变成碳。

经过几百万年,氦核燃烧殆尽,现在恒星的结构组成已经不那么简单了:外壳仍然是以氢为主的混和物;而在它下面有一个氦层,氦层内部还埋有一个碳球。核反应过程变得更加复杂,中心附近的温度继续上升,最终使碳转变为其他元素。

与此同时,红巨星外部开始发生不稳定的脉动振荡:恒星半径时而变大,时而又缩小,稳定的主星序恒星变为极不稳定的巨大火球,火球内部的核反应也越来越趋于不稳定,忽而强烈,忽而微弱。此时的恒星内部核心实际上密度已经增大到每立方厘米十吨左右,我们可以说,此时,在红巨星内部,已经诞生了一颗白矮星。

我们知道,原子是由原子核和电子组成的,原子的质量绝大部分集中在原子核上,而原子核的体积很小。比如氢原子的半径为一亿分之一厘米,而氢原子核的半径只有十万亿分之一厘米。假如核的大小象一颗玻璃球,则电子轨道将在两公里以外。

而在巨大的压力之下,电子将脱离原子核,成自由电子。这种自由电子气体将尽可能地占据原子核之间的空隙,从而使单位空间内包含的物质也将大大增多,密度大大提高了。形象地说,这时原子核是“沉浸于”电子中。

一般把物质的这种状态叫做“简并态”。简并电子气体压力与白矮星强大的重力平衡,维持着白矮星的稳定。顺便提一下,当白矮星质量进一步增大,简并电子气体压力就有可能抵抗不住自身的引力收缩,白矮星还会坍缩成密度更高的天体:中子星或黑洞。

白矮星是恒星演化末期产生的天体。这些恒星不能维持核聚变反应,所以在经过氦闪进化到红巨星阶段之后,他们会将外壳抛出形成行星状星云,而留下一个核聚变产生的的高密度核心,即白矮星。由于缺乏能量的来源,白矮星会逐步释放热能而发光而冷却。其核心靠电子的斥力对抗重力,其密度可达每立方厘米十吨。电子斥力不足以支持超过1.4倍太阳质量的白矮星,外壳的重力会进一步使恒星塌缩成中子星或者黑洞。这个过程中经常伴随着超新星爆发。

释放能量会造成恒星逐步冷却,表面温度逐渐降低,恒星的颜色也会随之变化。经过数千亿年之后,白矮星会冷却到无法发光,成为黑矮星。但是目前普遍认为宇宙的年龄(150亿年)不足以使任何白矮星演化到这一阶段。

形成

白矮星是中低质量的恒星的演化路线的终点。在红巨星阶段的末期,恒星的中心会因为温度、压力不足或者核聚变达到铁阶段而停止产生能量(产生比铁还重的元素不能产生能量,而需要吸收能量)。恒星外壳的重力会压缩恒星产生一个高密度的天体。

一个典型的稳定独立白矮星具有大约半个太阳质量,比地球略大。这种密度仅次于中子星和夸克星。如果白矮星的质量超过1.4倍太阳质量,那么原子核之间的电荷斥力不足以对抗重力,电子会被压入原子核而形成中子星。

大部分恒星的演化过程都包含白矮星阶段。由于很多恒星会通过新星或者超新星爆发将外壳抛出,一些质量略大的恒星也可能最终演化成白矮星。

双星或者多星系统中,由于星际物质的交换,恒星的演化过程可能与单独的恒星不同,例如天狼星的伴星就是一颗年老的大约一个太阳质量的白矮星,但是天狼星是一颗大约2.3个太阳质量的主序星。

褐矮星

brown dwarf

褐矮星是构成类似恒星,但质量不够大,不足以在核心点燃聚变反应的气态天体。其质量在恒星与行星之间。

褐矮星是处于最小恒星与最大行星之间大小的天体,由于这一原因褐矮星非常暗淡,要发现它们十分复杂,因此要确定它们的大小就更加复杂。但是最近天文学家成功地发现了组成双星系统的两颗褐矮星,在确定它们围绕共同重心运行的参数之后,计算出这两颗褐矮星的重量和大小。

天文学家花了12年研究才发现这两颗褐矮星,总共观察了300多个夜晚和进行了1600次测量,结果计算出两颗相当年轻褐矮星(还不满100万年)全部必需的参数,它们位于离开地球1500光年的猎户星座。双星系统中较大一颗褐矮星直径超过木星50倍,而较小一颗褐矮星直径比木星大30倍,也就是说,它们的直径分别为太阳直径的70%和50%。尽管它们初看起来不算矮小,但是它们的质量分别仅为太阳质量的5.5%和3.5%。

天文学家还意外发现较轻褐矮星表面的温度更高些,虽然“普通”恒星的情形相反:恒星质量越大,它就越炽热。或许,引起这反常现象的原因在于某种物理作用过程,现代恒星结构理论没有考虑到这种物理作用过程(比如恒星的强烈磁场)。此外,这两颗褐矮星可能不是同时形成,也不是在同一地点形成,而是由于某种灾变而结合在一起,因此它们的表面温度不同,但是这一切暂时仍只是一种假设。

红矮星

根据赫罗图,红矮星在众多处于主序阶段的恒星当中,其大小及温度均相对较小和低,在光谱分类方面属于K或M型。它们在恒星中的数量较多,大多数红矮星的直径及质量均低于太阳的三分一,表面温度也低于3,500 K。释出的光也比太阳弱得多,有时更可低于太阳光度的万分之一。又由于内部的氢元素核聚变的速度缓慢,因此它们也拥有较长的寿命。红矮星的内部引力根本不足把氦元素聚合,也因此红矮星不可能膨胀成红巨星,而逐步收缩,直至氢气耗尽。也因为一颗红矮星的寿命可多达数百亿年,比宇宙的年龄还长,因此现时并没有任何垂死的红矮星。

人们可凭着红矮星的悠长寿命,来推测一个星团的大约年龄。因为同一个星团内的恒星,其形成的时间均差不多,一个较年老的星团,脱离主序星阶段的恒星较多,剩下的主序星之质量也较低,惟人们找不到任何脱离主序星阶段的红矮星,间接证明了宇宙年龄的存在。

人们相信,宇宙众多恒星中,红矮星占了大多数,大约75%左右。例如离太阳最近的恒星,半人马座的南门二比邻星,便是一颗红矮星,其光谱分类为M5,视星等11.0。

行星摇篮

不起眼的T矮星尽管并不是一颗恒星,但却暗含着非凡的“才能”。新的证据表明,由尘埃云围绕的天体有可能成为行星的发源地,这与它们围绕着恒星运转的结果非常类似。尘埃颗粒在围绕年轻恒星运转时会黏结在一起,并且产生结晶,行星的形成也就是从此时开始的。随着时间的流逝,这些尘埃同时也会形成一个平而薄的盘。结晶化需要很高的温度,人们曾经认为这一能量来源于恒星的辐射。在这一前提下,天文学家推测,褐矮星——其质量约为太阳的1%至9%,并且内核因为无法达到足够的热量而不能像普通的恒星一样燃烧氢——由于温度太低而无法将周围的尘埃转化为行星。

为了验证这一假设,美国亚利桑那大学的天文学家Dániel Apai和他的同事利用斯皮策空间望远镜对附近一个恒星形成区域的T矮星聚集地带进行了研究,这些恒星的年纪在100万年至300万年之间。研究小组在8个研究目标中的6个发现了代表硅酸盐尘埃颗粒的红外辐射现象。研究人员随后观测到,这些尘埃正在生长、结晶,并且逐渐沉淀为一个扁平的盘。这一研究结果意味着,T矮星能够形成行星。研究人员在10月21日出版的美国《科学》杂志上报告了这一发现。Apai表示,“我们认为如果它们(尘埃云)能够开始,那么它们一定就有结果。”

然而意大利佛罗伦萨di Arcetri天文观测站的天文学家Leonardo Testi认为,在行星的形成过程中依然存在着许多不确定因素,并且不是所有的尘埃颗粒都能够形成行星。他指出,根据理论预测,当这些鹅卵石大小的天体互相碰撞后将会彼此摧毁,而不会黏结在一起。此外,天文学家很难追踪这样的颗粒,这是由于随着它们变得越来越大,对它们释放出的更长的波长进行探测变得日益困难。但是Testi表示,T矮星是行星摇篮这一说法依然非常具有诱惑力,特别是当这些天体变成了离我们最近的邻居后更是如此。

相关信息

矮星系在本星系群的40个星系中,就是20多个是椭圆矮星系,可见其数目之多。这类星系非常难以测出,因为他们不像大星系那样明显和发亮,但在数量上却超过了大星系。在我们银河系附件紧挨着有许多矮星系,其数量比其他所有类型星系之和都多。在邻近的星系团中已发现大量的矮星系。其中一些具有规则的形状,星系多半都含有星族Ⅱ的恒星;形状不规则的矮星系一般含有非常亮的蓝星。

近日,天文学家表示美国航空航天局在很短的时间内在巨大古老的星系中观察到了很多以前不为人知的矮星系。尽管矮星系的天体在整个宇宙当中属于较小的天体,但是,矮星系在宇宙进化当中起到了至关重要的作用。天文学家称也许宇宙中最先形成的就是矮星系,而且是矮星系构成了大的星系。迄今为止,矮星系是宇宙中最多的星系,天体也是宇宙中最多的,是它们组成了最基本的宇宙。宇宙进化的电脑模拟图也显示了宇宙中矮星的超高密度,就像此次观察到的矮星一样,在古老巨大的星系中矮星的数目也许比天文学家预想的要多的多。

早期预言从以前宇宙遗留下来的矮星系数目比我们现在所能够观测到的多许多,大约有120—200个在独立地绕银河系运动,但至今人们才总共发现了20个,十分难发现。但不久将来,人们会发现更多的矮星系。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/24 0:12:36