请输入您要查询的百科知识:

 

词条 椭圆
释义

椭圆是平面上到两定点的距离之和为常值的点之轨迹, 也可定义为到定点距离与到定直线间距离之比为常值的点之轨迹。它是圆锥曲线的一种,即圆锥与平面的截线。 椭圆在方程上可以写为标准式x^2/a^2+y^2/b^2=1,它还有其他一些表达形式,如参数方程表示等等。椭圆在开普勒行星运行三定律中扮演了重要角色,即行星轨道是椭圆,以恒星为焦点。

椭圆的简单几何性质

1、范围

2、对称性:关于X轴对称,Y轴对称

3、顶点:(a.0)(-a.0)(0.b)(0.-b)

4、离心率:e=c/a

椭圆的定义

椭圆的第一定义

平面内与两定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆。

即:│PF1│+│PF2│=2a

其中两定点F1、F2叫做椭圆的焦点,两焦点的距离│F1F2│=2c<2a叫做椭圆的焦距。

长轴长| A1A2 |=2a 短轴长 | B1B2 |=2b

椭圆的第二定义

平面上到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数) 其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c<焦点在X轴上>或者y=±a^2/c<焦点在Y轴上>)。

椭圆的其他定义:根据椭圆的一条重要性质,也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值 定值为e^2-1 可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况,还有K应满足<0且不等于-1。

切线与法线的几何性质

定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB切椭圆C于点P,且A和B在直线上位于P的两侧,则∠APF1=∠BPF2。

定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB为C在P点的法线,则AB平分∠F1PF2。

上述两定理的证明可以查看参考资料。

计算机图形学约束

椭圆必须一条直径与X轴平行,另一条直径Y轴平行。不满足此条件的几何学椭圆在计算机图形学上视作一般封闭曲线。

椭圆的方程

椭圆的标准方程

高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。

椭圆的标准方程有两种,取决于焦点所在的坐标轴:

1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)

2)焦点在Y轴时,标准方程为:y^2/a^2+x^2/b^2=1 (a>b>0)

其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。

又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。即标准方程的统一形式。

椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ

标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a^2+yy0/b^2=1

椭圆的一般方程

Ax^2+By^2=C(A>0,B>0,且A≠B)。

椭圆的参数方程

x=acosθ , y=bsinθ。

椭圆的极坐标方程

(一个焦点在极坐标系原点,另一个在θ=0的正方向上)

r=a(1-e^2)/(1-ecosθ)

(e为椭圆的离心率)

公式

椭圆的面积公式

S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长)。

或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)。

椭圆的周长公式

椭圆周长没有公式,有积分式或无限项展开式。

椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如

L = ∫[0,π/2]4a * sqrt(1-(e*cost)&sup2;)dt≈2π√((a&sup2;+b&sup2;)/2) [椭圆近似周长],其中a为椭圆长半轴,e为离心率

椭圆离心率的定义为椭圆上焦距与长轴的比值,(范围:大于0 小于1)

椭圆的准线方程 x=±a^2/c

椭圆的离心率公式

e=c/a(0<e<1),因为2a>2c。离心率越大,椭圆越扁平;离心率越小,椭圆越接近于圆形。

椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/c) 的距离为b^2/c

椭圆焦半径公式

焦点在x轴上:|PF1|=a+ex |PF2|=a-ex(F1,F2分别为左右焦点)

椭圆过右焦点的半径r=a-ex

过左焦点的半径r=a+ex

焦点在y轴上:|PF1|=a-ey |PF2|=a+ey(F1,F2分别为上下焦点)

椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值=2b^2/a

椭圆的斜率公式

过椭圆上x^2/a^2+y^2/b^2=1上一点(x,y)的切线斜率为 -(b^2)X/(a^2)y

三角形面积公式

若有一三角形两个顶点在椭圆的两个焦点上,且第三条边在椭圆上

那么若∠F1PF2=θ,则S=(b^2)tan(θ/2)

椭圆的曲率公式

K=ab/[(b^2-a^2)(cosθ)^2+a^2]^(3/2)

点和直线与椭圆的关系

点与椭圆位置关系

点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1

点在圆内:x0^2/a^2+y0^2/b^2<1

点在圆上:x0^2/a^2+y0^2/b^2=1

点在圆外:x0^2/a^2+y0^2/b^2>1

直线与椭圆位置关系

y=kx+m ①

x^2/a^2+y^2/b^2=1 ②

由①②可推出x^2/a^2+(kx+m)^2/b^2=1

相切△=0

相离△<0无交点

相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)

|AB|=d = √(1+k^2)[(x1+x2)^2-4x1*x2] = √(1+1/k^2)[(y1+y2)^2-4x1*x2]

椭圆参数方程的应用

求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解

x=a×cosβ, y=b×sinβ a为长轴长的一半

相关性质

由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。

例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):

将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。

设两点为F1、F2

对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2

则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2

由定义1知:截面是一个椭圆,且以F1、F2为焦点

用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆

例:已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3.

1.求椭圆C的方程.

2.直线l:y=x+1与椭圆交于A,B两点,P为椭圆上一点,求△PAB面积的最大值.

3.在(2)的基础上求△AOB的面积.

一 分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=√3,又c/a=√6/3,代入得c=√2,b=√(a^2-c^2)=1,方程是x^2/3+y^2/1=1,

二 要求面积,显然以ab作为三角形的底边,联立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-1.5,y2=-0.5.利用弦长公式有√(1+k^2))[x2-x1](中括号表示绝对值)弦长=3√2/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大,过p做弦的平行线,可以 发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求得m=2,-2.结合图形得m=-2.x=1.5,y=-0.5,p(1.5,-0.5),

三 直线方程x-y+1=0,利用点到直线的距离公式求的√2/2,面积1/2*√2/2*3√2/2=3/4,

历史

椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其内表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)

Apollonius 所著的八册《圆锥曲线论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天辟地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截线不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。

椭圆手工画法

手绘椭圆方法一

画长轴AB,短轴CD,AB和CD互垂平分于O点。(2):连接AC。(3):以O为圆心,OA为半径作圆弧交OC延长线于E点。(4):以C为圆心,CE为半径作圆弧与AC交于F点。(5):作AF的垂直平分线交CD延长线于G点,交AB于H点。(6):截取H,G对于O点的对称点H’,G’ (7):H,H’为长轴圆心,分别以HB、H‘A为半径;G,G’为短轴原心,分别以GC、G‘D为半径。

用一根线或者细铜丝,铅笔,2个图钉或大头针画椭圆的方法:先画好长短轴的十字线,在长轴上以圆点为中心先找2个大于短轴半径的点,一个点先用图钉或者打头针栓好线固定住,另一个点的线先不要固定,用笔带住线去找长短轴的4个顶点,此步骤需要多次定位,直到都正好能于顶点吻合后固定住这2个点,用笔带住线,直接画出椭圆:)使用细铜丝最好,因为线的弹性较大画出来不一定准确!

手绘椭圆方法二

椭圆的焦距│FF'│(Z)定义,为已知椭圆所构成的长轴X(ab)与短轴Y(cd)则以长轴一端A为圆心短轴Y为半径画弧,从长轴另一段点B引出与弧相切的线段则为该椭圆焦距,求证公式为2√{(Z/2)^2+(Y/2)^2}+Z=X+Z(平面内与两定点F、F'的距离的和等于常数2a(2a>|FF'|)的动点P的轨迹叫做椭圆),可演变为z=√x^2-y^2(x>y>0)。Z两端点F、F'为定点。取有韧性切伸缩系数越小越好的线,环绕线段AF'或者FB线段任意一组为长度,以该长度为固定三角形周长,以F、F' 为定点、取构成该三角形上的第三点为动点画弧则构成该椭圆。

Ellipse(椭圆)函数

函数功能:该函数用于画一个椭圆,椭圆的中心是限定矩形的中心,使用当前画笔画椭圆,用当前的画刷填充椭圆。

函数原型:BOOL Ellipse(HDC hdc,int nLeftRect,int nTopRect,nRightRect,int nBottomRect).

参数:

hdc:设备环境句柄。

nLeftRect:指定限定椭圆左上角的X坐标。

nTopRect:指定限定椭圆左上角的Y坐标。

nRightRect:指定限定椭圆右下角的X坐标。

nBottomRect:指定限定椭圆右下角的Y坐标。

返回值:如果函数调用成功,返回值非零;如果函数调用失败,返回值是0。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/15 11:04:22