词条 | 图像处理与分析 |
释义 | 书 名: 图像处理与分析 作 者:(美国)(TonyF.Chan)陈繁昌 出版社: 科学出版社 出版时间: 2009 ISBN: 9787030234858 书名:图像处理与分析 作者:(美国)(TonyF.Chan)陈繁昌 ISBN:9787030234858 类别:计算机科学 定价:88.00 元 出版社:科学出版社 出版时间:2009 开本:1/16 内容简介Image Processing and Analysis: Variational,PDE,Wavelet,and Stochastic Methodsis systematic and well organized,The authors first investigate the geometric,functional,and atomic structures of images and then rigorously develop and analyzes ever alimage processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring the irintrinsic connection sand integration. The material is balanced in theory and computation, following a solid theoretic alanalysis of model building and performance with computational implementation and numerical examples. This book is written for graduate students and researcher sinapplied mathematics, computerscience, electrical engineering, and other disciplines who are interested in problems in imaging and computervision. It can beused as a reference by scientists with specific tasks in image processing, as well as by researcher swith a general interest in finding out about the latest advances. 目录ListofFigures Preface 1Introduction 1.1DawningoftheEraofImagingSciences 1.1.1ImageAcquisition 1.1.2ImageProcessing 1.1.3ImageInterpretationandVisualIntelligence 1.2ImageProcessingbyExamples 1.2.1ImageContrastEnhancement 1.2.2ImageDenoisirg 1.2.3ImageDeblurring 1.2.4ImageInpainting 1.2.5ImageSegmentation 1.3AnOverviewofMethodologiesinImageProcessing 1.3.1MorphologicalApproach 1.3.2FourierandSpectralAnalysis 1.3.3WaveletandSpace-ScaleAnalysis 1.3.4StochasticModeling 1.3.5VariaticnalMethods 1.3.6PartialDifferentialEquations(PDEs) 1.3.7DifferentApproachesAreIntrinsicallyInterconnected 1.4OrganizationoftheBook 1.5HowtoReadtheBcok 2SomeModernImageAnalysisTools 2.1GeometryofCurvesandSurfaces 2.1.IGeometryofCurves 2.1.2GeometryofSurfacesinThreeDimensions 2.1.3HausdorffMeasuresandDimensions 2.2FunctionswithBoundedVariations 2.2.1TotalVariatienasaRadonMeasure 2.2.2BasicPropertiesofBVFunctions 2.2.3TheCo-AreaFormula 2.3ElementsofThermodynamicsandStatisticalMechanics 2.3.1EssentialsofThermodynamics 2.3.2EntropyandPotentials 2.3.3StatisticalMechanicsofEnsembles 2.4BayesianStatisticalInference 2.4.1ImageProcessingorVisualPerceptionasInference 2.4.2BayesianInference:BiasDuetoPriorKnowledge 2.4.3BayesianMethodinImageProcessing 2.5LinearandNonlinearFilteringandDiffusion 2.5.1PointSpreadingandMarkovTransition 2.5.2LinearFilteringandDiffusion 2.5.3NonlinearFilteringandDiffusion 2.6WaveletsandMultiresolutionAnalysis 2.6.1QuestforNewImageAnalysisTools 2.6.2EarlyEdgeTheoryandMarr’sWavelets 2.6.3WindowedFrequencyAnalysisandGaborWavelets 2.6.4Frequency-WindowCoupling:Malvar-WilsonWavelets 2.6.5TheFrameworkofMultiresolutionAnalysis(MRA) 2.6.6FastImageAnalysisandSynthesisviaFilterBanks 3ImageModelingandRepresentation 3.1ModelingandRepresentation:What,Why,andHow 3.2DeterministicImageModels 3.2.1ImagesasDistributions(GeneralizedFunctions) 3.2.2LpImages 3.2.3SobolevImagesHn(Ω) 3.2.4BVImages 3.3WaveletsandMultiscaleRepresentation 3.3.1Constructionof2-DWavelets 3.3.2WaveletResponsestoTypicalImageFeatures 3.3.3BesovImagesandSparseWaveletRepresentation 3.4LatticeandRandomFieldRepresentation 3.4.1NaturalImagesofMotherNature 3.4.2ImagesasEnsemblesandDistributions 3.4.3ImagesasGibbs’Ensembles 3.4.4ImagesasMarkovRandomFields 3.4.5VisualFiltersandFilterBanks 3.4.6Entropy-BasedLearningofImagePatterns 3.5Level-SetRepresentation 3.5.1ClassicalLevelSets 3.5.2CumulativeLevelSets 3.5.3Level-SetSynthesis 3.5.4AnExample:LevelSetsofPiecewiseConstantImages 3.5.5HighOrderRegularityofLevelSets 3.5.6StatisticsofLevelSetsofNaturalImages 3.6TheMumford-ShahFreeBoundaryImageModel 3.6.1PiecewiseConstant1-DImages:AnalysisandSynthesis 3.6.2PiecewiseSmooth1-DImages:FirstOrderRepresentation 3.6.3PiecewiseSmoothI-DImages:PoissonRepresentation 3.6.4PiecewiseSmooth2-DImages 3.6.5TheMumford-ShahModel 3.6.6TheRoleofSpecialBVImages 4ImageDenoising 4.1Noise:Origins.Physics.andModels 4.l.1OriginsandPhysicsofNoise 4.1.2ABriefOverviewof1-DStochasticSignals 4.1.3StochasticModelsofNoises 4.1.4AnalogWhiteNoisesasRandomGeneralizedFunctions 4.1.5RandomSignalsfromStochasticDifferentialEquations 4.l.62-DStochasticSpatialSignals:RandomFields 4.2LinearDenoising:LowpassFiltering 4.2.1Signalvs.Noise 4.2.2DenoisingviaLinearFiltersandDiffusion 4.3Data-DrivenOptimalFiltering:WienerFilters 4.4WaveletShrinkageDenoising 4.4.1Shrinkage:Quasi-statisticalEstimationofSingletons 4.4.2Shrinkage:VariationalEstimationofSingletons 4.4.3DenoisingviaShrinkingNoisyWaveletComponents 4.4.4VariationalDenoisingofNoisyBesovImages 4.5VariationalDenoisingBasedonBVImageModel 4.5.1TV.RobustStatistics.andMedian 4.5.2TheRoleofTVandBVImageModel 4.5.3BiasedIteratedMedianFiltering 4.5.4Rudin.Osher.andFatemi'sTVDenoisingModel 4.5.5ComputationalApproachestoTVDenoising 4.5.6DualityfortheTVDenoisingModel 4.5.7SolutionStructuresoftheTVDenoisingModel 4.6DenoisingviaNonlinearDiffusionandScale-SpaceTheory 4.6.1PeronaandMalik'sNonlinearDiffusionModel 4.6.2AxiomaticScale-SpaceTheory 4.7DenoisingSalt-and-PepperNoise 4.8MultichannelTVDenoising 4.8.1VariationalTVDenoisingofMultichannelImages 4.8.2ThreeVersionsofTV[u] 5ImageDeblurring 5.1Blur:PhysicalOriginsandMathematicalModels 5.1.1PhysicalOrigins 5.1.2MathematicalModelsofBlurs 5.1.3Linearvs.NonlinearBlurs 5.2Ill-posednessandRegularization 5.3DeblurringwithWienerFilters 5.3.1IntuitiononFilter-BasedDeblurring 5.3.2WienerFiltering 5.4DeblurringofBVImageswithKnownPSF 5.4.1TheVariationalModel 5.4.2ExistenceandUniqueness 5.4.3Computation 5.5VariationalBlindDeblurringwithUnknownPSF 5.5.1ParametricBlindDeblurring 5.5.2Parametric-Field-BasedBlindDeblurring 5.5.3NonparametricBlindDeblurring 6ImageInpainting 6.1ABriefReviewonClassicalInterpolationSchemes 6.1.1PolynomialInterpolation 6.1.2TrigonometricPolynomialInterpolation 6.1.3SplineInterpolation 6.1.4Shannon'sSamplingTheorem 6.1.5RadialBasisFunctionsandThin-PlateSplines 6.2ChallengesandGuidelinesfor2-DImageInpainting 6.2.1MainChallengesforImageInpainting 6.2.2GeneralGuidelinesforImageInpainting 6.3InpaintingofSobolevImages:Green'sFormulae 6.4GeometricModelingofCurvesandImages 6.4.1GeometricCurveModels 6.4.22-.3-PointAccumulativeEnergies.Length.andCurvature. 6.4.3ImageModelsviaFunctionalizingCurveModels 6.4.4ImageModelswithEmbeddedEdgeModels 6.5InpaintingBVImages(viatheTVRadonMeasure) 6.5.1FormulationoftheTVInpaintingModel 6.5.2JustificationofTVInpaintingbyVisualPerception 6.5.3ComputationofTVlnpainting 6.5.4DigitalZoomingBasedonTVInpainting 6.5.5Edge-BasedImageCodingviaInpainting 6.5.6MoreExamplesandApplicationsofTVInpainting 6.6ErrorAnalysisforImageInpainting 6.7InpaintingPiecewiseSmoothImagesviaMumfordandShah 6.8ImageInpaintingviaEuler'sElasticasandCurvatures 6.8.1InpaintingBasedontheElasticaImageModel 6.8.2InpaintingviaMumford-Shah-EulerImageModel 6.9InpaintingofMeyer'sTexture 6.10ImageInpaintingwithMissingWaveletCoefficients 6.11PDEInpainting:Transport.Diffusion.andNavier-Stokes 6.11.1SecondOrderInterpolationModels 6.11.2AThirdOrderPDEInpaintingModelandNavier-Stokes …… 7ImageSegmentation Bibliography Index …… |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。