词条 | 数轴穿根法 |
释义 | 简介“数轴穿根法”又称“数轴标根法” 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:保证X最高次项系数为正) 例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根“上去,一上一下依次穿过各根。 第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿跟线以内的范围;如果不等号为“<”则取数轴下方,穿跟线以内的范围。 例如: 若求(x-2)(x-1)(x+1)>0的根。 在数轴上标根得:-1 1 2 画穿根线:由右上方开始穿根。 因为不等号威“>”则取数轴上方,穿跟线以内的范围。即:-1<x<1或x>2。 穿根法的奇过偶不过定律:就是当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过0点的。但是对于X奇数幂项,就要穿过0点了。还有一种情况就是例如:(X-1)^2.当不等式里出现这种部分时,线是不穿过1点的。但是对于如(X-1)^3的式子,穿根线要过1点。也是奇过偶不过。可以简单记为“奇穿过,偶弹回”。 例如 :x^2*(x-2)^3*(x+1)^5>0 则有3个零点,X=0、-1或2 先画一根数轴(X轴),分别描这3点 再从右向左,从上向下 画线,要穿过零点的那种。因为(x-2)^3指数是3为奇,所以从上向下穿过去 到0了,因为x^2指数是2为偶,就不穿,再在数轴下方画线 到-1了,因为(x+1)^5指数是5为奇数,就穿过去,到达数轴上方 然后看数轴上方的范围,因为是>0,轴上点不取。 还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,直接把分号下面的乘上来,变成乘法式子。继续用穿根法,但是注意,解不能让原来分式下面的式子等于0 数轴的作用(观察通道) 规定了原点,正方向,单位长度的直线,叫做数轴。在某一事物上通过某一维度的评估,可以将事物分成很多不同的层次加以认识。这样,能够更加准确,详细地描述事物的本质。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。