请输入您要查询的百科知识:

 

词条 数学与文化
释义

《数学与文化》,主要阐述了作为人类文化组成部分的数学的特点,读后可让我们感觉到数学对于人类的积极作用。阅读时要把握提示语,提取概括句。更重要的是对每一个特点作仔细的分析,找到数学与文化的关系、数学与人类的关系。

基本信息

作者:齐民友

出版社:大连理工大学出版社

页码:302 页码

出版日:2008年

ISBN:7561142986/9787561142981

装帧:平装

开本:32

中文:中文

丛书名:数学科学文化理念传播丛书

作者简介

齐民有 1930年出生,安徽人,1952年毕业于武汉大学数学系,一直在武汉大学数学系工作,历任数学系教师,博士生导师,曾获1987年自然科学奖四等奖,曾任武汉大学校长,国务院学位委员会数学组成员,中国数字会副理事长。

--------------------------------------------------------------------------------

目录

绪言

一 理性的觉醒

1.1 希腊的几何学

1.2 欧几里得的《几何原本》

1.3 数学与第一次科学革命

1.4 欧几里得与理性时代

1.5 希尔伯特的《几何基础》

二 数学反思呼唤着暴风雨

2.1 绝对几何学与欧几里得几何

2.2 非欧几何的发现

2.3 罗巴契夫斯基几何内容的简单介绍

2.4 数学——人类悟性的自由创造物?

2.5 罗氏几何的相容性

2.6 关于数学基础

2.7 数学的“失乐园”

——哥德尔定理意味着什么?

三 “我从一无所有之中创造了一个新宇宙”

3.1 弯曲的宇宙

3.2 相对论——牛顿的时空的终结

3.3 无尽的探索

结束语

背景知识

这篇课文节选自《数学与文化》一书的绪言。作者齐民友,1930年生,安徽芜湖人,数学教授,曾任武汉大学校长。1988年夏季的一天,作者和几位朋友谈到数学时,提出了“一个没有现代数学的文化是注定要衰落的”观点。后来,作者又为哲学系学生讲数学课,更加全面系统地研究了数学文化的特点以及数学对于人类文化的影响。课文节选的部分,体现了作者的一些主要观点。

数学是研究数与形的科学,它来源于生产,服务于生活,并不是空中楼阁。在古代埃及,尼罗河定期泛滥,重新丈量土地的需要发展了几何学;在古代中国,发达的农业生产及天文观测的需要,也促进了数学的发展。数学与社会文化始终是密切相关的。据说,两千多年前,柏拉图学园的门口挂着一块牌子,写着:“不懂几何的人不得入内。”柏拉图本人就曾做过一次题为“善的概念”的讲演,切实地探讨过“数学与文化”的问题。他认为,数学与伦理学中的“善”在理想化方面是相同的,用笔画出来的点、线、面都是一种抽象,因而也是一种理想。柏拉图之后的两千多年,即1939年12月,英国数学家、哲学家怀特海在美国哈佛大学作了一次讲演,题为“数学与善”,重申了柏拉图的思想,认为只有人类的智力才能“从实例中抽象出某一类型东西来。人类这个特性的最明显的表现就是数学概念和善的理想”。可见,数学并不是一棵傲然孤立的大树。它是在人类的物质需求和精神生活影响下生长起来的,同时它也以自己独特的魅力对人类文化的不同领域产生深远影响。

内容理解

在当代社会,探讨数学与文化的关系问题,一般公众可能会有更多的陌生感和畏惧心理。因为现代数学的发展,毕竟远离了普通人的生活视野和经验,变得越来越抽象。如果不从人类文化的高度来认识这个问题,很难激发起人们的兴趣。作者在第1段中正是选取了这样一个切入点,大声疾呼:“请注意,数学也是文化的一部分。”然后,由浅入深地概括了数学在现代自然科学中的基础学科地位:数学首先是一种科学的语言和工具,也是“科学革命的旗帜”。理解第一点似乎不难,因为这差不多已融入现代人关于数学的模糊的认识中;但理解第二点,则需要对近现代科学史有一定的了解,作者在后文中也着重列举了这方面的例子。

课文的2~5段是主体部分,主要讲了数学文化的以下三个特点:

第一,数学“追求一种完全确定、完全可靠的知识”。这是从数学学科本体方面来论述的。请注意这里所用的修饰、限定词语“完全确定”“完全可靠”,这正是数学有别于其他知识之处。作者举的“三角形内角和为180°”的例子,是初学平面几何必学的内容,浅近易懂。然而作者并没有就事论事,而是进一步在更深层的社会文化背景中来论述数学的这一特点,从古希腊的文化背景中来思考问题。古希腊的智者由于坚信这个世界是可以理解的,并可以用永恒的法则来表述它,才发展了数学精神,也强化了用演绎的形式进行严密推理的“逻辑方法”,这就保证了数学成为一门确定可靠的知识。

第二,数学的简单性、深刻性、统一性。这是从数学学科与其他学科的关系,即作为一种科学语言方面来论述的。这种理念也根植于古希腊科学哲学思想,并越来越为近现代科学发展的历史所证明。所谓简单性,是指大千世界纷繁的表象可以用很简单的定律来解释。像牛顿的万有引力定律(物体间由于质量而引起的相互吸引力的基本定律),既可以解释苹果落地,也可以解释行星运动;所谓深刻性,是指数学可以找出物质世界的一些终极答案,如爱因斯坦的著名公式E=mc2,就揭示了质量(m)和能量(E)的相当性;所谓统一性,是指数学可以对不同的物质现象作综合的解释,如麦克斯韦方程组就统一了关于电和磁的理论。

第三,数学可以自我反思、自我完善。数学发展的历史,就是在不断探索中逐步完善的历史。很多概念从无到有,许多方法从旧到新。到了现代,数学更对自己的科学体系进行了一系列反思。最有代表性的事件是1900年德国数学家希尔伯特在巴黎第二届国际数学大会上所作的“数学问题”的讲演,他根据19世纪数学研究的状况,对各类数学问题的意义和研究方法作了精辟的阐述,并提出了23个数学问题,涉及现代数学大部分重要领域,推动了20世纪的数学发展,数学史上称之为“希尔伯特数学问题”。

课文6~8段,作者简单论述了数学对其他人类文化和对人类精神生活的影响。首先肯定数学对其他学科的支持作用,赞美“数学是人类理性发展最高的成就”,然后从“促进了人的思想解放”和“表达了一种探索精神”两个方面阐述数学文化对人类进步的贡献。在西方,科学发展的历史,就是与宗教抗争的历史,就是反蒙昧、反专制的历史。在这中间,数学以它的确实和完美,起到了主要的作用,并最终逐出了在自然科学领域同样居于统治地位的上帝。促进人的思想解放,可以说是数学探索精神最值得骄傲的胜利。

课文结语,作者满怀激情地提出了他思索已久的中心论点:“一种没有相当发达的数学的文化是注定要衰落的,一个不掌握数学作为一种文化的民族也是注定要衰落的。”这是发人深省的议论。

语言品味

这篇文章在语言上有以下几个特点值得我们注意。

1.准确

数学作为一门科学,本身就是以逻辑谨严著称的。作者在阐述数学文化时,语言上也表现出同样的风格。如在谈数学的确定性、可靠性时,举“三角形内角和为180°”的例子,前面加上“欧几里得平面上的”作为限定语,就更加严密。因为在非欧几何中,这样的命题就不成立。非欧几何是一种不同于欧氏几何学的几何体系,一般指罗巴切夫斯基的双曲几何和黎曼的椭圆几何。在前者中,三角形的内角和小于180°;在后者中,三角形的内角和大于180°。

2.生动

无论数学文化或它所涉及的理念有多么艰深,作者总是力求用生动活泼的语言来阐释,使文章更加通俗易懂。如第5段几乎全用拟人式的自问形式,来反思数学文化自身的问题;第6段把数学比作“一株参天大树”,还说“在它的树干上有越来越多的鸟巢”,形象地说明了数学作为一门科学的强大和它对其他科学的影响。

3.流畅

本文所探讨的问题,是作者经过长期积累、深思熟虑的,因而在论述的过程中充满激情,笔力雄健,气势飞动,纵横驰骋无所不宜。作者有时用叙述的语句作严格的判断,有时用疑问的语气引起注意,有时用并列的短语作铺排, 有时用层进的长句进行推论, 挥洒自如, 议论风生,增强了文章的感染力。

有关资料

一、希腊古代数学(梁宗巨)

古希腊的地理范围,除了现在的希腊半岛以外,还包括整个爱琴海区域和北面的马其顿和色雷斯、意大利半岛和小亚细亚等地。公元前五六世纪,特别是希、波战争以后,雅典取得希腊城邦的领导地位,经济生活高度繁荣,生产力显著提高,在这个基础上产生了光辉灿烂的希腊文化,对后世有深远的影响。

希腊数学的发展历史可以分为三个时期。第一期从伊奥尼亚学派到柏拉图学派为止,约当公元前7世纪中叶到公元前3世纪;第二期是亚历山大前期,从欧几里得起到公元前146年希腊陷于罗马为止;第三期是亚历山大后期,是罗马人统治下的时期,结束于641年亚历山大被阿拉伯人占领。

伊奥尼亚学派从古代埃及、巴比伦的衰亡,到希腊文化的昌盛,这过渡时期留下来的数学史料很少。不过希腊数学的兴起和希腊商人通过旅行交往接触到古代东方的文化有密切关系。伊奥尼亚位于小亚细亚西岸,它比希腊其他地区更容易吸收巴比伦、埃及等古国积累下来的经验和文化。在伊奥尼亚,氏族贵族政治为商人的统治所代替,商人具有强烈的活动性,有利于思想自由而大胆地发展。城邦内部的斗争,帮助摆脱传统信念。在希腊没有特殊的祭司阶层,也没有必须遵守的教条,因此有相当程度的思想自由。这大大有助于科学和哲学从宗教中分离开来。

米利都是伊奥尼亚的最大城市,也是泰勒斯的故乡。泰勒斯是公认的希腊哲学鼻祖。早年是一个商人,曾游访巴比伦、埃及等地,很快就学会古代流传下来的知识,并加以发扬。以后创立伊奥尼亚哲学学派,摆脱宗教,从自然现象中去寻找真理,以水为万物的根源。

当时天文、数学和哲学是不可分的,泰勒斯同时也研究天文和数学。他曾预测到一次日食,促使米太(在今黑海、里海之南)、吕底亚(今土耳其西部)两国停止战争。多数学者认为该次日食发生在公元前585年5月28日。他在埃及时曾利用日影及比例关系算出金字塔的高度,使法老大为惊讶。泰勒斯在数学方面的贡献是开始了命题的证明,它标志着人们对客观事物的认识从感性上升到理性,这在数学史上是一个不寻常的飞跃。伊奥尼亚学派的著名学者还有阿纳克西曼德和阿纳克西米尼等。他们对后来的毕达哥拉斯有很大的影响。

毕达哥拉斯学派毕达哥拉斯公元前580年左右生于萨摩斯(今希腊东部小岛)。为了摆脱暴政,移居意大利半岛南部的克罗顿。在那里组织一个政治、宗教、哲学、数学合一的秘密团体。后来在政治斗争中遭到破坏,毕达哥拉斯被杀害,但他的学派还继续存在两个世纪(约公元前500~前300)之久。这个学派企图用数来解释一切,不仅仅认为万物都包含数,而且说万物都是数。他们以发现勾股定理(西方叫做毕达哥拉斯定理)闻名于世,又由此导致不可通约量的发现。这个学派还有一个特点,就是将算术和几何紧密联系起来。他们找到用三个正整数表示直角三角形三边长的一种公式,又注意到从1起连续的奇数和必为平方数等等,这既是算术问题,又和几何有关。他们还发现五种正多面体。在天文方面,首创地圆说,认为日、月、五星都是球体,浮悬在太空中。毕达哥拉斯还是音乐理论的始祖。

伊奥尼亚学派和毕达哥拉斯学派有显著的不同。前者研习数学并不单纯为了哲学的兴趣,同时也为了实用。而后者却不注重实际应用,将数学和宗教联系起来,想通过数学去探索永恒的真理。

智人学派公元前5世纪,雅典成为人文荟萃的中心,人们崇尚公开的精神。在公开的讨论或辩论中,必须具有雄辩、修辞、哲学及数学等知识,于是“智人学派”(sophist school,或译巧辩学派、哲人学派)应运而生。他们以教授文法、逻辑、数学、天文、修辞、雄辩等科目为业。在数学上,他们提出“三大问题”:①三等分任意角;②倍立方,即求作一立方体,使其体积是已知立方体的二倍;③化圆为方,即求作一正方形,使其面积等于一已知圆。问题的难处,是作图只许用直尺(没有刻度的尺)和圆规。希腊人的兴趣并不在于图形的实际作出,而是在尺规的限制下从理论上去解决这些问题。这是几何学从实际应用向系统理论过渡所迈出的重要的一步。这个学派的安提丰(约公元前430)提出用“穷竭法”去解决化圆为方问题,是近代极限理论的雏形。先作圆内接正方形,以后每次边数加倍,得8,16,32、……边形,这样继续下去,安提丰深信“最后”的多边形与圆的“差”必会“穷竭”。这提供了求圆面积的近似方法,和中国的刘徽(约263年前后)的割圆术思想不谋而合。

柏拉图学派及其他学术中心柏拉图(约公元前427~前347)在雅典建立学派,创办学园。他非常重视数学,但片面强调数学在训练智力方面的作用,而忽视其实用价值。他主张通过几何的学习培养逻辑思维能力,因为几何能给人以强烈的直观印象,将抽象的逻辑规律体现在具体的图形之中。这个学派培养出不少数学家,如欧多克索斯就曾就学于柏拉图,他创立了比例论,是欧几里得的前驱。柏拉图的学生亚里士多德也是古代的大哲学家,是形式逻辑的奠基者。他的逻辑思想为日后将几何学整理在严密的逻辑体系之中开辟了道路。

这个时期的希腊数学中心还有以芝诺(约公元前496~前430)为代表的埃利亚学派,他提出四个悖论,给学术界以极大的震动。这四个悖论是:①二分说,一物从甲地到乙地,永远不能到达。因为想从甲到乙,首先要通过道路的一半,但要通过这一半,必须先通过一半的一半,这样分下去,永无止境。结论是此物的运动被道路的无限分割阻碍着,根本不能前进一步。②阿基琉斯(善跑英雄)追龟说,阿基琉斯追乌龟,永远追不上。因为当他追到乌龟的出发点时,龟已向前爬行了一段,他再追完这一段,龟又向前爬了一小段。这样永远重复下去,总也追不上。③飞箭静止说,每一瞬间箭总在一个确定的位置上,因此它是不动的。④运动场问题,芝诺论证了时间和它的一半相等。

以德谟克利特为代表的原子论学派,认为线段、面积和立体,是由许多不可再分的原子所构成。计算面积和体积,等于将这些原子集合起来。这种不甚严格的推理方法却是古代数学家发现新结果的重要线索。

公元前4世纪以后的希腊数学,逐渐脱离哲学和天文学,成为独立的学科。数学的历史于是进入一个新阶段──初等数学时期。这个时期的特点,是数学(主要是几何学)已建立起自己的理论体系,从以实验和观察为依据的经验科学过渡到演绎的科学。由少数几个原始命题(公理)出发,通过逻辑推理得到一系列的定理。这是希腊数学的基本精神。在这一时期里,初等几何、算术、初等代数大体已成为独立的科目。和17世纪出现的解析几何学、微积分学相比,这一个时期的研究内容可以用“初等数学”来概括,因此叫做初等数学时期。

埃及的亚历山大城,是东西海陆交通的枢纽,又经过托勒密王(约公元前367~前285)的加意经营,逐渐成为新的希腊文化中心,希腊本土这时已经退居次要地位。几何学最初萌芽于埃及,以后移植于伊奥尼亚,其次繁盛于意大利和雅典,最后又回到发源地。经过这一番培植,已达到丰茂成林的境地。

亚历山大前期从公元前4世纪到公元前146年古希腊灭亡,罗马成为地中海区域的统治者为止,希腊数学以亚历山大为中心,达到它的全盛时期。这里有巨大的图书馆和浓厚的学术空气,各地学者云集在此进行教学和研究。其中成就最大的是亚历山大前期三大数学家欧几里得、阿基米德和阿波罗尼奥斯。

欧几里得的《几何原本》是一部划时代的著作。其伟大的历史意义在于它是用公理法建立起演绎体系的最早典范。过去所积累下来的数学知识,是零碎的、片断的,可以比作砖瓦木石;只有借助于逻辑方法,把这些知识组织起来,加以分类、比较,揭露彼此间的内在联系,整理在一个严密的系统之中,才能建成宏伟的大厦。《几何原本》体现了这种精神,它对整个数学的发展产生深远的影响。阿基米德是物理学家兼数学家,他善于将抽象的理论和工程技术的具体应用结合起来,又在实践中洞察事物的本质,通过严格的论证,使经验事实上升为理论。他根据力学原理去探求解决面积和体积问题,已经包含积分学的初步思想。阿波罗尼奥斯的主要贡献是对圆锥曲线的深入研究。

除了三大数学家以外,埃拉托斯特尼(约公元前276~前195)的大地测量和以他为名的“素数筛子”也很出名。天文学家喜帕恰斯(公元前2世纪)制作“弦表”,是三角学的先导。

亚历山大后期公元前146年以后,在罗马统治下的亚历山大学者仍能继承前人的工作,不断有所发明。海伦(约公元62)、门纳劳斯(约公元100)、帕普斯等人都有重要贡献。天文学家C.托勒密(约85~165)将喜帕恰斯的工作加以整理发挥,奠定了三角学的基础。

晚期的希腊学者在算术和代数方面也颇有建树,代表人物有尼科马霍斯(约公元100)和丢番图(约250)。前者是杰拉什(今约旦北部)地方的人。著有《算术入门》,后者的《算术》是讲数的理论的,而大部分内容可以归入代数的范围。它完全脱离了几何的形式,在希腊数学中独树一帜,对后世影响之大,仅次于《几何原本》。

325年,罗马帝国的君士坦丁大帝开始利用宗教作为统治的工具,把一切学术都置于基督教神学的控制之下。529年,东罗马帝国皇帝查士·丁尼下令关闭雅典的柏拉图学园以及其他学校,严禁传授数学。许多希腊学者逃到叙利亚和波斯等地。数学研究受到沉重的打击。641年,亚历山大被阿拉伯人占领,图书馆再次被毁,希腊数学至此告一段落。

(选自《中国大百科全书·数学卷》,中国大百科全书出版社1998年版)

二、数学促进人类思想解放(齐民友)

从历史上看,数学促进人类思想解放大约有两个阶段。第一个阶段从数学开始成为一门科学直到以牛顿为最高峰的第一次科学技术革命。不妨说,在这个时期中,数学帮助人类从宗教和迷信的束缚下解放出来,从物质上、精神上进入了现代世界。这一阶段开始于人类文化开始萌芽的时期。在那时,尽管不少民族都有了一定的数学知识的积累,数学还没有形成一门科学。数学的作用主要是为解决人类的物质生活的具体问题服务的。人类刚从蒙昧中觉醒。迷信、原始宗教还控制着人类的精神世界。三大宗教的出现还是比较晚的事了。在远古的一些民族中,数学对人类的精神生活的影响还只表现在卜卦、占星上,成为“神”与人之间沟通的工具。一直到了希腊文化的出现,开始有了我们现在所理解的数学科学,其突出的成就就是欧几里得几何学。它的意义是:在当时的哲学理论的影响与推动下,第一次提出了认识宇宙的数学设计图的使命,第一次提出了人的理性思维应该遵循的典范。由于当时世界各部分相对地比较隔绝,这个数学文化影响所及大抵还只是地中海沿岸。希腊衰落,罗马人取而代之,这个文化的影响也逐渐转向东罗马和阿拉伯人的地区。欧洲逐渐进入黑暗的中世纪。到新的生产关系开始出现,人类需要一种新文化以与当时占统治地位的天主教相对抗,希腊文化又被复活了起来,形成所谓“文艺复兴”(这当然不会是原来的希腊文化)。数学直接继承了希腊的数学成就,终于成了当时科学技术革命的旗帜。它的主题仍然是“认识宇宙,也认识人类自己”。它与宗教的矛盾日益深刻,尽管有宗教裁判所和它的酷刑,上帝的地位还是逐渐被贬低了。到了牛顿时代,当时的科学技术革命达到了顶峰,而上帝的地位也下降到了低谷。牛顿的自然神论离彻底的无神论只有一步之遥。人的地位上升了。他凭借着理性旗帜要求成为大自然的统治者。当时的技术革命,其科学基础是牛顿力学,而从文化思想上说,其实是机械师和工匠的革命。人对大自然的“统治”,也只是一个工匠认识了一部大机器,开动了这一部大机器,并且局部地模仿与复制这部大机器。但是这个工匠仍时而打着上帝的旗号。人尽管要求以自己的理性来重新安排人类自己的生活,但人对自己的看法,以拉美特利(Lamettrie,Juliende,1709—1751,法国机械唯物论哲学家)的口号为标志也就是“人是机器”。机械唯物论的决定论,是当时的科学技术革命的指导思想,而数学是它的最主要的武器。当时数学的发展以微积分的出现为其最高峰,在这个时期确实取得了极其辉煌的胜利。由希腊起源的这个文化,现在从地域上说已成了全世界的文化。这是因为资本主义把我们的地球变成了一个世界,而资本主义的文化也日益成了全世界的文化。作为它的一个重要组成部分的数学也就不再只是希腊的数学,而成为全人类的数学文化。其他民族例如中国,尽管在数学上有过灿烂的成就,现在其影响和作用比这个新的、全人类的数学,也就瞠乎其后,不能相比了。有一些民族的成就被吸收到这个新的全人类的数学中,甚至起了极其重要的作用,特别是印度和阿拉伯的数学是如此;有一些就成了历史的陈迹了。对于中国人来说,重要的不是在历史的丰碑面前凭吊怀古,而是奋起直追。明末清初,先进的中国人开始理解这一点。徐光启开始翻译欧几里得的《几何原本》,康熙皇帝亲自主编过堪称为中国的《几何原本》的《数理精蕴》,都表明中国人正在开始脚踏实地地学习直接由希腊数学发源的新的全人类的数学。总之,这是一次伟大的思想解放运动。从当时世界范围来看,是人类逐渐从宗教的统治下解放出来。从中国来看,尽管由于历史的、社会的原因,宗教的思想统治不如当时欧洲之烈,但到了17世纪,资本主义萌芽已经在中国出现,中国人也要求一种新的生产关系及其文化。特别是鸦片战争以后,中国人更要求反抗帝国主义的侵略,这样,自然也要求新的文化。17世纪以后,现代的数学传入了中国,开始为中国人所接受,并与中国固有的文化相抗衡,成为中国人求解放求富强的思想武器,正是这个历史潮流的反映。

第二阶段由18世纪末算起。到了那时,数学化的物理学、力学、天文学已经取得了惊人的进展。可是人们越来越要求从完全的决定论下解放出来。这里面有社会、政治的原因,也有文艺、哲学上的反映,我们都不去讨论了。但是有一点很明显,数学的重要性已经不如前一个阶段。当时科学发展的最重大的问题是要求用一个发展的观点,把世界看作一个发展的、进化的、各部分相互联系的整体。黑格尔哲学提出唯心主义的辩证法,以一种扭曲的形式回答了这个问题。他认为“绝对观念”是宇宙的本质,“绝对观念”在发展过程中“外化”为物质,并且按照由低级到高级的方向,由无机物发展到有机体,有了生命,然后从低级生物发展到高级生物,然后成为人。最后,“绝对观念”又在人的意识的发展中复归为自身。黑格尔的自然哲学是他的哲学体系中最薄弱的一环,其原因之一在于当时自然科学的发展提供的基础所限。马克思、恩格斯的功绩就是在唯物主义的基础上改造了辩证法,成了辩证唯物主义。这一个发展除了社会的、历史的背景以外,还有自然科学的基础。能量的守恒与转化(与热机、热力学的发展相关)、细胞的发现,特别是达尔文的进化论,就是最突出的几件大事。这样,数学自然从人们的视野中后退。数学家倒没有因此而失望,因为他们仍然继续在为人类做出重大的贡献,而其意义甚至是他们自己也未曾预料到的。数学家这个时期的工作,一方面是继续扩展已有的成就,另一方面是向深处进军。这里最突出的事例一是非欧几何的发现,二是关于无限的研究。前者根本改变了我们对空间的本性的认识。后者是由微积分的基础研究开始的,也说明从希腊时代的芝诺悖论(庄子“天下篇”中讲的惠施十辩中的“飞鸟之景,未尝动也”和芝诺悖论几乎是完全一样。可惜的是,这些思想一直停留在抽象的思辨上而没有具体展开。这当然与数学没有在中国很好发展有关)所揭示的有限与无限的矛盾是何等深刻。特别是非欧几何的出现是人类思想一次大革命。它仍然是一种思想解放:这一次是从人自己的定见下解放出来。数学的对象越来越多的是“人类悟性的自由创造物”。这件事引起了多少人对数学的误解和指责,实际上是人类的一大进步。人在自己的成长中发现,单纯凭着直接的经验去认识宇宙是多么不够。人既然在物质上创造出了自然界中本来没有的东西──一切工具、仪器等等──来认识和创造世界,为什么不能在思维中创造出种种超越直接经验的数学结构来表现自然界的本来面目呢?数学的这一进步在当时并没有超出牛顿力学的决定世界观,但非欧几何的确从根本上动摇了牛顿的时空观,为相对论的出现开辟了道路。对数学本身更有深远意义的是,这两件大事(非欧几何的出现和关于无限的研究)导致了对数学基础的研究,使人类第一次十分具体而严格地提出了理性思维能力的界限何在的问题。

现在是否又到了一个新的阶段?我们暂时不必去回答。但是十分明显的是,数学的发展确实给人类的生活开辟了新天地。这不但是指文化思想上,而且也是指物质上。相对论的意义大概谁也不能低估了,如果再加上量子物理(同样,没有第二阶段的数学的发展以及伴之而来的种种人类悟性的自由创造物,就不可能有量子物理),则现代的物理科学构成当代各种新技术的科学基础,这是谁也不能否认的事。人们都说下一个世纪将是计算机的世纪,其特征是人能够或多或少地模仿或复制人的思维。可是也只是因为数学发展到今天的高度,计算机才可能成为现实。

(选自《数学与文化》,湖南教育出版社1991年版)

三、数学的特点(周金才梁兮)

关于数学所具有的特点,可以把数学和其他学科相比较,这种特点就十分明显了。

同其他学科相比,数学是比较抽象的。数学的抽象性表现在哪里呢?那就是暂时撇开事物的具体内容,仅仅从抽象的数方面去进行研究。比如在简单的计算中,2+3既可以理解成两棵树加三棵树,也可以理解成两部机床加三台机床。在数学里,我们撇开树、机床的具体内容,而只是研究2+3的运算规律,掌握了这个规律,那就不论是树、机床,还是汽车或者别的什么事物都可以按加法的运算规律进行计算。乘法、除法等运算也都是研究抽象的数,而撇开了具体的内容。

数学中的许多概念都是从现实世界抽象出来的。比如几何学中的“直线”这一概念,并不是指现实世界中的拉紧的线,而是把现实的线的质量、弹性、粗细等性质都撇开了,只留下了“向两方无限伸长”这一属性,但是现实世界中是没有向两方无限伸长的线的。几何图形的概念、函数概念都是比较抽象的。但是,抽象并不是数学独有的属性,它是任何一门科学乃至全部人类思维都具有的特性。只是数学的抽象性有它不同于其他学科抽象的特征罢了。

数学的抽象性具有下列三个特征:第一,它保留了数量关系或者空间形式。第二,数学的抽象是经过一系列的阶段形成的,它达到的抽象程度大大超过了自然科学中的一般抽象。从最原始的概念一直到像函数、复数、微分、积分、泛函、n维甚至无限维空间等抽象的概念都是从简单到复杂、从具体到抽象这样不断深化的过程。当然,形式是抽象的,但是内容却是非常现实的。正如列宁所说的那样:“一切科学的(正确的、郑重的、不是荒唐的)抽象,都更深刻、更正确、更完全地反映着自然。”(《黑格尔〈逻辑学〉一书摘要》,《列宁全集》第38卷第181页)第三,不仅数学的概念是抽象的,而数学方法本身也是抽象的。物理或化学家为了证明自己的理论,总是通过实验的方法;而数学家证明一个定理却不能用实验的方法,必须用推理和计算。比如虽然我们千百次地精确测量等腰三角形的两底角都是相等的,但是还不能说已经证明了等腰三角形的底角相等,而必须用逻辑推理的方法严格地给予证明。在数学里证明一个定理,必须利用已经学过或者已经证过的概念、定理用推理的方法导出这个新定理来。我们都知道数学归纳法,它就是一种比较抽象的数学证明方法。它的原理是把研究的元素排成一个序列,某种性质对于这个序列的首项是成立的,假设当第k项成立,如果能证明第k+1项也能成立,那么这一性质对这序列的任何一项都是成立的,即使这一序列是无穷序列。

数学的第二个特点是准确性,或者说逻辑的严密性,结论的确定性。

数学的推理和它的结论是无可争辩、毋容置疑的。数学证明的精确性、确定性从中学课本中就充分显示出来了。

欧几里得的几何经典著作《几何原本》可以作为逻辑的严密性的一个很好的例子。它从少数定义、公理出发,利用逻辑推理的方法,推演出整个几何体系,把丰富而零散的几何材料整理成了系统严明的整体,成为人类历史上的科学杰作之一,一直被后世推崇。两千多年来,所有初等几何教科书以及19世纪以前一切有关初等几何的论著都以《几何原本》作为根据。“欧几里得”成为几何学的代名词,人们并且把这种体系的几何学叫做欧几里得几何学。

但是数学的严密性不是绝对的,数学的原则也不是一成不变的,它也在发展着。比如,前面已经讲过《几何原本》也有不完美的地方,某些概念定义得不明确,采用了本身应该定义的概念,基本命题中还缺乏严密的逻辑根据。因此,后来又逐步建立了更严密的希尔伯特公理体系。

第三个特点是应用的广泛性。

我们几乎每时每刻都要在生产和日常生活中用到数学,丈量土地、计算产量、制订计划、设计建筑都离不开数学。没有数学,现代科学技术的进步也是不可能的,从简单的技术革新到复杂的人造卫星的发射都离不开数学。

而且,几乎所有的精密科学、力学、天文学、物理学甚至化学通常都是以一些数学公式来表达自己的定律的,并且在发展自己的理论的时候,广泛地应用数学这一工具。当然,力学、天文学和物理学对数学的需要也促进了数学本身的发展,比如力学的研究就促使了微积分的建立和发展。

数学的抽象性往往和应用的广泛性紧密相连,某一个数量关系,往往代表一切具有这样数量关系的实际问题。比如,一个力学系统的振动和一个电路的振荡等用同一个微分方程来描述。撇开具体的物理现象中的意义来研究这一公式,所得的结果又可用于类似的物理现象中,这样,我们掌握了一种方法就能解决许多类似的问题。对于不同性质的现象具有相同的数学形式,就是相同的数量关系,是反映了物质世界的统一性,因为量的关系不只是存在于某一种特定的物质形态或者它的特定的运动形式中,而是普遍存在于各种物质形态和各种运动形式中,所以数学的应用是很广泛的。

正因为数学来自现实世界,正确地反映了客观世界联系形式的一部分,所以它才能被应用,才能指导实践,才表现出数学的预见性。比如,在火箭、导弹发射之前,可以通过精密的计算,预测它的飞行轨道和着陆地点;在天体中的未知行星未被直接观察到以前,就从天文计算上预测它的存在。同样的道理也才使得数学成为工程技术中的重要工具。

下面举几个应用数学的光辉例子。

第一,海王星的发现。太阳系中的行星之一的海王星是在1846年在数学计算的基础上发现的。1781年发现了天王星以后,观察它的运行轨道总是和预测的结果有相当程度的差异,是万有引力定律不正确呢,还是有其他的原因?有人怀疑在它周围有另一颗行星存在,影响了它的运行轨道。1844年英国的亚当斯(1819—1892)利用引力定律和对天王星的观察资料,推算这颗未知行星的轨道,花了很长的时间计算出这颗未知行星的位置,以及它出现在天空中的方位。亚当斯于1845年9~10月把结果分别寄给了剑桥大学天文台台长查理士和英国格林尼治天文台台长艾里,但是查理士和艾里迷信权威,把它束之高阁,不予理睬。

1845年,法国一个年轻的天文学家、数学家勒维烈(1811—1877)经过一年多的计算,于1846年9月写了一封信给德国柏林天文台助理员加勒(1812—1910),信中说:“请你把望远镜对准黄道上的宝瓶星座,就是经度326°的地方,那时你将在那个地方1°之内,见到一颗九等亮度的星。”加勒按勒维烈所指出的方位进行观察,果然在离所指出的位置相差不到1°的地方找到了一颗在星图上没有的星──海王星。海王星的发现不仅是力学和天文学特别是哥白尼日心学说的伟大胜利,而且也是数学计算的伟大胜利。

第二,谷神星的发现。1801年元旦,意大利天文学家皮亚齐(1746—1826)发现了一颗新的小行星──谷神星。不过它很快又躲藏起来,皮亚齐只记下了这颗小行星是沿着9°的弧运动的,对于它的整个轨道,皮亚齐和其他天文学家都没有办法求得。德国的24岁的高斯根据观察的结果进行了计算,求得了这颗小行星的轨道。天文学家们在这一年的12月7日在高斯预先指出的方位又重新发现了谷神星。

第三,电磁波的发现。英国物理学家麦克斯韦(1831—1879)概括了由实验建立起来的电磁现象,呈现为二阶微分方程的形式。他用纯数学的观点,从这些方程推导出存在着电磁波,这种波以光速传播着。根据这一点,他提出了光的电磁理论,这理论后来被全面发展和论证了。麦克斯韦的结论还推动了人们去寻找纯电起源的电磁波,比如由振动放电所发射的电磁波。这样的电磁波后来果然被德国物理学家赫兹(1857—1894)发现了。这就是现代无线电技术的起源。

第四,1930年,英国理论物理学家狄拉克(1902—1984)利用数学演绎法和计算预言了正电子的存在。1932年,美国物理学家安德逊在宇宙射线实验中发现了正电子。

类似的例子不胜枚举。总之,在天体力学中,在声学中,在流体力学中,在材料力学中,在光学中,在电磁学中,在工程科学中,数学都作出了异常准确的预言。

(选自《数学的过去、现在和未来》,中国青年出版社1982年版)

四、数学与文化——是与非的观念 克莱因

数学一直是形成现代文化的主要力量,同时又是这种文化极其重要的因素,这种观点在许多人看来是难以置信的,或者充其量来说也只是一种夸张的说法。这种怀疑态度完全可以理解,它是一种普遍存在的对数学实质的错误概念所带来的结果。

由于受学校教育的影响,一般人认为数学仅仅是对科学家、工程师,或许还有金融家才有用的一系列技巧。这样的教育导致了对这门学科的厌恶和对它的忽视。当有人对这种状况提出异议时,某些饱学之士可以得到权威们的支持。圣 奥古斯丁(St.Augustine)不是说过吗:“好的基督徒应该提防数学家和那些空头许诺的人。这样的危险已经存在,数学家们已经与魔鬼签定了协约,要使精神进入黑暗,把人投入地狱”。古罗马法官则裁决“对于作恶者、数学家诸如此类的人”应禁止他们“学习几何技艺和参加当众运算像数学这样可恶的学问。”叔本华(Schopenhauer),一位在现代哲学史上占有重要地位的哲学家,也把算术说成是最低级的精神活动,他之所以持这种态度,是基于算术能通过机器来运算这一事实。

由于学校数学教学的影响,这些权威性的论断和流行的看法,竟被认为是正确的!但是一般人忽视数学的观点仍然是错误的。数学学科并不是一系列的技巧。这些技巧只不过是它微不足道的方面:它们远不能代表数学,就如同调配颜色远不能当作绘画一样。

技巧是将数学的激情、推理、美和深刻的内涵剥落后的产物。如果我们对数学的本质有一定的了解,就会认识到数学在形成现代生活和思想中起重要作用这一断言并不是天方夜谭。

因此,让我们看一看20世纪人们对这门学科的态度。首先,数学主要是一种寻求众所周知的公理法思想的方法。这种方法包括明确地表述出将要讨论的概念的定义,以及准确地表述出作为推理基础的公设。具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。数学的这一特征由17世纪一位著名的作家在论及数学和科学时,以某种不同的方式表述过:“数学家们像恋人。……承认一位数学家的最初的原理,那么他由此将会推导出你也必须承认的另一结论,从这一结论又推导出其他的结论。”

仅仅把数学看作一种探求的方法,就如同把达 芬奇“最后的晚餐”看作是画布上颜料的组合一样。数学也是一门需要创造性的学科。在预测能被证明的内容时,和构思证明的方法时一样,数学家们利用高度的直觉和想象。例如,牛顿和开普勒就是极富于想象力的人,这使得他们不仅打破了长期以来僵化的传统,而且建立了新的、革命性的概念。在数学中,人的创造能力运用的范围,只有通过检验这些创造本身才能决定。有些创造性成果将在后面讨论,但这里只需说一下现在这门学科已有八十多个广泛的分支就够了。

如果数学的确是一种创造性活动,那么驱使人们去追求它的动力是什么呢?研究数学最明显的、尽管不一定是最重要的动力是为了解决因社会需要而直接提出的问题。商业和金融事务、航海、历法的计算、桥梁、水坝、教堂和宫殿的建造、作战武器和工事的设计,以及许多其他的人类需要,数学能对这些问题给出最完满的解决。在我们这个工程时代,数学被当作普遍工具这一事实更是毋庸置疑。数学的另外一个基本作用(的确,这一点在现代特别突出),那就是提供自然现象的合理结构。数学的概念、方法和结论是物理学的基础。这些学科的成就大小取决于它们与数学结合的程度。数学已经给互不关联的事实的干枯骨架注入了生命,使其成了有联系的有机体,并且还将一系列彼此脱节的观察研究纳入科学的实体之中。

智力方面的好奇心和对纯思维的强烈兴趣,激励许多数学家研究数的性质和几何图形,并且取得了富有创造性的成果。今天很受重视的概率论,就开始于牌赌中的一个问题——一场赌博在结束之前就被迫中止了,那么赌注如何分配才合理?另外一个与社会需要或科学没有什么联系的最突出的成就,就是由古代希腊人创造出来的,他们把数学转变成了抽象的、演绎的和公理化的思想系统。事实上,数学学科中一些最伟大的成就——射影几何、数论、超穷数理论和非欧几何,这里我只提到我们将要讨论的内容——都是为了解决纯智力的挑战。

进行数学创造的最主要的趋策力是对美的追求。罗素,这位抽象数学思想的大师曾直言不讳地说:数学,如果正确地看它,则具有……至高无上的美——正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种真实的喜悦的精神,一种精神上的亢奋,一种觉得高于人的意识——这些是至善至美的标准,能够在诗里得到,也能够在数学里得到。

除了完善的结构美以外,在证明和得出结论的过程中,运用必不可少的想象和直觉也给创造者提供了高度的美学上的满足。如果美的组成和艺术作品的特征包括洞察力和想象力,对称性和比例、简洁,以及精确地适应达到目的的手段,那么数学就是一门具有其特有完美性的艺术。

尽管历史已清楚地表明,上述所有因素推动了数学的产生和发展,但是依然存在许多错误的观点。有这样的指责(经常是用来为对这门学科的忽视作辩解的),认为数学家们喜欢沉湎于毫无意义的臆测;或者认为数学家们是笨拙和毫无用处的梦想家。对这种指责,我们可以立刻作出使其无言以对的驳斥。事实证明,即使是纯粹抽象的研究,更不用说由于科学和工程的需要而进行的研究了,也是有极大用处的。圆锥曲线(椭圆、双曲线和抛物线)自被发现二干多年来,曾被认为不过是“富于思辨头脑中的无利可图的娱乐”,可是最终它却在现代天文学、仿射运动理论和万有引力定律中发挥了作用。

另一方面,一些“具有社会头脑”的作家断言:数学完全或者主要是由于实际需要,如需要建筑桥梁、制造雷达和飞机而产生或发展的。这种断言也是错误的。数学已经使这些对人类方便有用的东西成为可能,但是伟大的数学家在进行思考和研究时却很少把这些放在心上。有些人对实际应用漠不关心,这可能是因为他们成果的应用在几百年后才实现。毕达哥拉斯和柏拉图的唯心主义数学玄想,比起货栈职员采用“+”号和“一”号的实际行动来(这曾使某一作家深信“数学史上的一个转折点乃是由日常的社会活动所致”),所作的贡献要大得多。确实,几乎每一个伟大的人物所考虑的都是他那个时代的问题,流行的观点会制约和限制他的思想。如果牛顿早生二百年,他很有可能会成为一位出色的神学家。伟大的思想家追求时代智力风尚,就如同妇女在服饰上赶时髦一样。即使是把数学作为纯粹业余爱好的富有创造性的天才,也会去研究令专业数学家和科学家感到十分激动的问题。但是,那些“业余爱好者”和数学家们一般并不十分关心他们工作的实用价值。

实用的、科学的、美学的和哲学的因素,共同促进了数学的形成。把这些做出贡献、产生影响的因素中的任何一个除去,或者抬高一个而去贬低另外一个都是不可能的,甚至不能断定这些因素中谁具有相对的重要性。一方面,对美学和哲学因素作出反应的纯粹思维,决定性地塑造了数学的特征,并且作出了像欧氏几何和非欧几何这样不可超越的贡献。另一方面,数学家们登上纯思维的顶峰不是靠他们自己一步步攀登,而是借助于社会力量的推动。如果这些力量不能为数学家们注入活力,那么他们就立刻会身疲力竭;然后他们就仅仅只能维持这门学科处于孤立的境地。虽然在短时期内还有可能光芒四射,但所有这些成就会是昙花一现。

数学的另一个重要特征是它的符号语言。如同音乐利用符号来代表和传播声音一样,数学也用符号表示数量关系和空间形式。与日常讲话用的语言不同,日常语言是习俗的产物,也是社会和政治运动的产物,而数学语言则是慎重地、有意地而且经常是精心设计的、凭借数学语言的严密性和简洁性,数学家们就可以表达和研究数学思想,这些思想如果用普通语言表达出来,就会显得冗长不堪。这种简洁性有助于思维的效率。J.K.杰罗姆(J.K.Jerome),为了需要求诸于代数符号,在下面一段描写中,尽管与数学无关,却清楚地表现了数学的实用性和明了性:

当一个12世纪的青年堕入情网时,他不会后退三步,看着他心爱的姑娘的眼睛,对他说她是世界上最漂亮的人儿。他说他要冷静下来,仔细考虑这件事。如果他在外面碰上一个人,并且打破了他的脑袋——我指另外一个人的脑袋——于是那就证明了他的——前面那个小伙子——姑娘是个漂亮姑娘。如果是另外一个小伙子打破了他的脑袋——不是他自己的,你知道,而是另外那个人的——对第二个小伙子来说的另外一个。因为另外一个小伙子只是对他来说是另外一个,而不是对前面那个小伙子——那么,如果他打破了他的头,那么他的姑娘——不是另外一个小伙子,而是那个小伙子,他……。瞧:如果A打破了月B脑袋,那么A的姑娘是一个漂亮的姑娘。但如果B打破了A的头,那么A的姑娘就不是一个漂亮的姑娘,而B的姑娘是一个漂亮的姑娘。

简洁的符号能够使数学家们进行复杂的思考时应付自如,但也会使门外汉听数学讨论如坠五里云雾。

数学语言中使用的符号十分重要,它们能区别日常语言中经常引起混乱的意义。例如,英语中使用“is”一词时,就有多种不同的意义。在“他在这儿”(He is here)这个句子中,“is”就表示一种物理位置。在“天使是白色的”(Anangel is white)这个句子中,它表示天使的一种与位置或物理存在无关的属性。在“那个人正在跑”(The man is running)这个句子中,这个词"is”表示的是动词时态。在“二加二等于四"(Two and Two are four)这个句子中,is的形式被用于表示数字上的相等。在“人是两足的能思维的哺乳动物”(Men are the two—legged thinking mammals)这个句子中,is的形式被用来断言两组之间的等同。当然,在一般日常会话中引用各种各样不同的词来解释is的所有这些意义,不过是画蛇添足,因为尽管有这些意义上的混乱,人们也不会因此产生什么误会。但是,数学的精确性——它与科学和哲学的精确性一样,要求数学领域的研究者们更加谨慎。

数学语言是精确的,它是如此精确,以致常常使那些不习惯于它特有形式的人觉得莫名其妙。如果一个数学家说:“今天我没看见一个人”(I did not see one person today),那么他的意思可能是他要么一个人也没看见,要么他看见了许多人。一般人则可能简单地认为他一个人也没看见。数学的这种精确性,在一个还没有认识到它对于精密思维的重要性的人看来,似乎显得过于呆板,过于拘泥于形式。然而任何精密的思维和精确的语言都是不可分割的数学风格以简洁和形式的完美作为其目标,但有时由于过分地拘泥于形式上的完美和简洁,以致丧失了精确竭力要达到的清晰。假定我们想用一般术语表述图1所示的内容,我们很有可能说:“有一个直角三角形,画两个以该三角形的直角边作为其边的正方形,然后再画一个以该三角形斜边作为其边的正方形,那么第二个正方形的面积就等于前面两个正方形面积之和。”但是没有一个数学家会用这样的方式来表达自己的想法。他会这样说:“直角三角形直角边的平方和等于斜边的平方。”这种简洁的用词使表述更为精炼,而且这种数学表达式具有重要的意义,因为它的确是言简意赅。还有,由于这种惜墨如金的做法,任何数学文献的读者有时会发现自己的耐心受到了极大的考验。

数学不仅是一种方法、一门艺术或一种语言。数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说;满足了人类探索宇宙的好奇心和对美妙音乐的冥想;甚至可能有时以难以察觉到的方式但无可置疑地影响着现代历史的进程。

数学是一门知识体系,但是它却不包含任何真理。与之相反的观点却认为数学是无可辩驳的真理的汇集,认为数学就像是信仰《圣经》的教徒们从上帝那儿获得最后的启示录一样,这是一个难以消除的、流传甚广的谬论。直到1850年为止,甚至数学家们也赞同这种谬论。幸运的是,19世纪发生的一些数学事件(这些我们随后将进行讨论)向这些数学家表明,这种看法是错误的。在这门学科中没有真理,而且在它的一些分支中的定理与另外一些分支中的定理是矛盾的。例如,上个世纪创立的几何中所确定的一些定理,与欧几里得在他的几何学中所证明的定理就是矛盾的。尽管没有真理,数学却一直给予了人类征服自然的神奇的力量。解决人类思想史上这个最大的悖论将是我们所关注的课题之一。

由于20世纪必须将数学知识与真理区分开,因此也必须将数学与科学区分开,因为科学确在寻求关于物质世界的真理。然而数学却无疑地是科学的灯塔,而且还继续帮助科学获得在现代文明中所占的位置。我们甚至可以正确地宣称,正是由于有了数学,现代科学才取得了辉煌的成就。但是我们将会看到,这两个领域有着明显的区别。

在最广泛的意义上说,数学是一种精神,一种理性的精神。正是这种精神,使得人类的思维得以运用到最完善的程度,亦正是这种精神,试图决定性地影响人类的物质、道德和社会生活;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。在本书中,我们最为关心的将是这种精神的作用。

数学还有一个更加典型的特征与我们的论述密切相关。数学是一棵富有生命力的树,她随着文明的兴衰而荣枯。它从史前诞生之时起,就为自己的生存而斗争,这场斗争经历了史前的几个世纪 和随后有文字记载历史的几个世纪,最后终于在肥沃的希腊土壤中扎稳了生存的根基,并且在一个较短的时期里茁壮成长起来了。在这个时期,它绽出了一朵美丽的花——欧氏几何。其他的花蕾也 含苞欲放。如果你仔细观察,还可以看到三角和代数学的雏形;但是这些花朵随着希腊文明的衰亡而枯萎了,这棵树也沉睡了一千年之久。

这就是数学那时的状况。后来这棵树被移植到了欧洲本土,又一次很好地扎根在肥沃的土壤中。到公元1600年,她又获得了在古希腊顶峰时期曾有过的旺盛的生命力,而且准备开创史无前例的光辉灿烂的前景。如果我们将17世纪以前所了解的数学称为初等数学,那么我们能说,初等数学与从那以后创造出的数学相比是徽不足道的。事实上,一个人拥有牛顿处于顶峰时期所掌握的知识,在今天不会被认为是一位数学家。因为与普通的观点相反,现在应该说数学是从微积分开始,而不是以之为结束。在我们这个世纪,这门学科已具有非常广泛的内容,以致没有任何数学家能够宣称他已精通全部数学。

数学发展的这幅素描,尽管简略,但却表明数学的生命力正是根植于养育她的文明的社会生活之中。事实上,数学一直是文明和文化的重要组成部分,因此许多历史学家通过数学这面镜子,了解了古代其他主要文化的特征。以古典时期的古希腊文化为例,它大约从公元前600年延续到公元前300年。由于古希腊数学家强调严密的推理以及由此得出的结论,因此他们所关心的并不是这些成果的实用性,而是教育人们去进行抽象的推理,和激发人们对理想与美的追求。因此,看到这个时代具有很难为后世超越的优美文学,极端理性化的哲学,以及理想化的建筑与雕刻,也就不足为奇了。

数学创造力的缺乏也表现在一个时代文明的文化里,这一点也是真实的。看看罗马的情况吧。在数学史上,罗马人在一定时期内曾作出过贡献,但从那以后他们就开始停滞不前了。阿基米德,最伟大的古希腊数学家和科学家,在公元前221年被突然闯入的罗马士兵杀害了,当时他正在研究画在沙盘中的几何图形。对此,A.N.怀特海(AlfredNorthWhitehead)说过:阿基米德死于一个罗马士兵之手,是一个世界发生头等重要变化的标志;爱好抽象科学、擅长推理的古希腊在欧洲的霸主地位,被重实用的罗马取代了。洛德 比肯斯菲尔德(LordBeaconsfield),在他的一部小说中,曾把重实用的人称为是重复其先辈错误的人。罗马是一个伟大的民族,但是他们却由于只重实用而导致了创造性的缺乏。他们没有发展其祖先的知识,他们所有的进步都局限于工程技术的细枝末叶。他们并不是那种能够提出新观点的梦想家,这些新观点能给人以更好地主宰自然界的力量。没有一个罗马人因为沉湎于数学图形而丧命。

事实上,西塞罗(Cicero)夸耀自己的同胞——感谢上帝——不是像希腊人一样的梦想家,而是把他们的数学研究派上实际用场的人。

注重实用的罗马帝国,将其精力用于权术和征服外邦。为迎接军队胜利归来的拱形的凯旋门,也许是罗马帝国的最好象征,但它们不是显得得体优雅,而是显得毫无生气。罗马最突出的特征也许是麻木不仁,罗马人几乎没有真正的独创精神。简言之,罗马文化是外来的,罗马时期的大多数成就主要渊源于小亚细亚的希腊,此时小亚细亚的希腊正处于罗马政权统治之下。

这几个例子告诉我们,一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显。在不抹煞历史学家、经济学家、哲学家、作家、诗人、画家和政治家功绩的前提下,我们可以这样说:其他文明已经产生了在能力和成就方面同等的效果。另一方面,尽管欧几里得和阿基米德无疑地是极其卓越的思想家,尽管我们的数学家得以达到最高的水平,这仅仅是因为像牛顿所说的那样,他们是站在巨人的肩膀上。然而,正是在我们这个时代,数学才达到了它应该达到的范围,而且有着不同寻常的用途。这样,由于数学已经广泛地影响着现代生活和思想,今天的西方文明与以往任何历史上的文明都有着明显的区别。也许,在这本书中,我们会看到现在这个时代是如何受惠于数学的。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/24 0:47:47