请输入您要查询的百科知识:

 

词条 切线定理
释义

切线(tangent line )

几何上,切线指的是一条刚好触碰到曲线上某一点的直线。更准确的说,当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的,此时,“切线在切点附近的部分”最接近“曲线在切点附近的部分”(无限逼近思想)。tangent在拉丁语中就是to touch的意思。类似的概念也可以推广到平面相切等概念中。

曲线切线和法线的定义

P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT叫做曲线C在点P的切线,P点叫做切点;经过切点P并且垂直于切线PT的直线PN叫做曲线C在点P的法线(无限逼近的思想)

说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l尽管和曲线C只有一个交点,但它却不是曲线C的切线.

圆的切线的性质和定理

切线的性质定理

圆的切线垂直于过其切点的半径;经过半径的非圆心一端,并且垂直于这条半径的直线,就是这个圆的一条切线。

切线判定定理

一直线若与一圆有交点,且连接交点与圆心的直线与该直线垂直,那么这条直线就是圆的切线。

切线的性质定理的推论

(1)经过切点垂直于切线的直线必经过圆心。(2)圆的切线垂直于经过切点的半径。

切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。

线段DA垂直于直线AB

BA为圆o的切线

切线性质

切线的性质定理

圆的切线垂直于经过切点的半径.

推论1:经过圆心且垂直于切线的直线必经过切点.

推论2:经过切点且垂直于切线的直线必经过圆心.

切线的主要性质

(1)切线和圆只有一个公共点;

(2)切线和圆心的距离等于圆的半径;

(3)切线垂直于经过切点的半径;

(4)经过圆心垂直于切线的直线必过切点;

(5)经过切点垂直于切线的直线必过圆心;

(6)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

其中(1)是由切线的定义得到的,(2)是由直线和圆的位置关系定理得到的,(6)是由相似三角形推得的,也就是切割线定理。

线的判定和性质

切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 。圆的切线垂直于这条圆的半径。

几何语言:∵l ⊥OA,点A在⊙O上

∴直线l是⊙O的切线(切线判定定理)

切线的性质定理 圆的切线垂直于经过切点半径

几何语言:∵OA是⊙O的半径,直线l切⊙O于点A

∴l ⊥OA(切线性质定理)

推论1 经过圆心且垂直于切线的直径必经过切点

推论2 经过切点且垂直于切线的直线必经过圆心

切线长定理

定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

几何语言:∵弦PB、PD切⊙O于A、C两点

∴PA=PC,∠APO=∠CPO(切线长定理)

弦切角

弦切角定理 弦切角等于它所夹的弧对的圆周角

几何语言:∵∠BCN所夹的是 ,∠A所对的是

∴∠BCN=∠A

推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

几何语言:∵∠BCN所夹的是 ,∠ACM所对的是 , =

∴∠BCN=∠ACM

弦切角概念:顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:

(1)顶点在圆上,即角的顶点是圆的一条切线的切点;

(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;

(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线.

它们是判断一个角是否为弦切角的标准,三者缺一不可,比如下图中 均不是弦切角.

(4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.

弦切角定理:弦切角等于它所夹的孤对的圆周角.它是圆中证明角相等的重要定理之一.

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 19:28:28