请输入您要查询的百科知识:

 

词条 平方和公式
释义

公式介绍

平方和公式n(n+1)(2n+1)/6

即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:n^2=n的平方)

证明方法

证法一

(归纳猜想法):

1、N=1时,1=1(1+1)(2×1+1)/6=1

2、N=2时,1+4=2(2+1)(2×2+1)/6=5

3、设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6

则当N=x+1时,

1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2

=(x+1)[2(x2)+x+6(x+1)]/6

=(x+1)[2(x2)+7x+6]/6

=(x+1)(2x+3)(x+2)/6

=(x+1)[(x+1)+1][2(x+1)+1]/6

也满足公式

4、综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证。

证法二

(利用恒等式(n+1)^3=n^3+3n^2+3n+1) :

(n+1)^3-n^3=3n^2+3n+1,

n^3-(n-1)^3=3(n-1)^2+3(n-1)+1

..............................

3^3-2^3=3*(2^2)+3*2+1

2^3-1^3=3*(1^2)+3*1+1.

把这n个等式两端分别相加,得:

(n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n,

由于1+2+3+...+n=(n+1)n/2,

代入上式得:

n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n

整理后得:

1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6

a^2+b^2=a(a+b)-b(a-b)

证法三

(见下图):

证法四

(排列组合法,见下图):

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/27 20:09:07