请输入您要查询的百科知识:

 

词条 连通图
释义

概述

在图论中,连通图基于连通的概念。在一个无向图 G 中,若从顶点vi到顶点vj有路径相连(当然从vjvi也一定有路径),则称vivj是连通的。如果 G 是有向图,那么连接vivj的路径中所有的边都必须同向。如果图中任意两点都是连通的,那么图被称作连通图。图的连通性是图的基本性质。

严格定义

对一个图 G=(V,E) 中的两点 xy ,若存在交替的顶点和边的序列

Γ=(x=v0-e1-v1-e2-...-ek-(vk+1)=y) (在有向图中要求有向边vi−( vi+1)属于E ),则两点 xy 是连通的。Γ是一条xy的连通路径,xy分别是起点和终点。当 x = y 时,Γ 被称为回路。如果通路 Γ 中的边两两不同,则 Γ 是一条简单通路,否则为一条复杂通路。如果图 G 中每两点间皆连通,则 G 是连通图。

相关概念

连通分量:无向图 G的一个极大连通子图称为 G的一个连通分量(或连通分支)。连通图只有一个连通分量,即其自身;非连通的无向图有多个连通分量。

强连通图:有向图 G=(V,E) 中,若对于V中任意两个不同的顶点 xy,都存在从xy以及从 yx的路径,则称 G是强连通图。相应地有强连通分量的概念。强连通图只有一个强连通分量,即是其自身;非强连通的有向图有多个强连分量。

弱连通图:将有向图的所有的有向边替换为无向边,所得到的图称为原图的基图。如果一个有向图的基图是连通图,则有向图是弱连通图。

初级通路:通路中所有的顶点互不相同。初级通路必为简单通路,但反之不真。

性质

一个无向图 G=(V,E) 是连通的,那么边的数目大于等于顶点的数目减一:|E|>=|V|-1,而反之不成立。

如果 G=(V,E) 是有向图,那么它是强连通图的必要条件是边的数目大于等于顶点的数目:|E|>=|V|,而反之不成立。

没有回路的无向图是连通的当且仅当它是树,即等价于:|E|=|V|-1。

参考来源

Fred Buckley,Marty Lewinter.《图论简明教程》.李慧霸 王凤芹 译.北京:清华大学出版社.2005 年

W.T.Tutte, Graph Theory . Cambridge University Press . 2004

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/25 4:49:10