词条 | 整除 |
释义 | § 基本含义 整除是指整数a除以自然数b除得的商正好是整数而余数是零.我们就说a能被b整除(或说b能整除a),记作b|a,读作“b整除a”或“a能被b整除”.它与除尽既有区别又有数的整除 联系.除尽是指数a除以数b(b≠0)所得的商是整数或有限小数而余数是零时,我们就说a能被b除尽(或说b能除尽a).因此整除与除尽的区别是,整除只有当被除数、除数以及商都是整数,而余数是零.除尽并不局限于整数范围内,被除数、除数以及商可以是整数,也可以是有限小数,只要余数是零就可以了.它们之间的联系就是整除是除尽的特殊情况. [1] § 基本概况 整数集的一个关系,初等数论最基本概念之一。对整数a,b(b≠0),若存在整数c,使a=bc,则称b整除a,或称a,能被b整除,记作b|a,b称为a的因数,a称为b的倍数。整除有下列基本性质:①若a|b,a|c,则a|b±c。②若a|b,则对任意c,a|bc。③对任意a,±1|a,±a|a。④若a|b,b|a,则|a|=|b|。对任意整数a,b,b>0,存在唯一的整数q,r,使a=bq+r,其中0≤r<b,这个事实称为带余除法定理,是整除理论的基础。若c|a,c|b,则称c是a,b的公因数。若d是a,b的公因数,且d可被a,b的任意公因数整除则称d是a,b的最大公因数。当d≥0时,d是a,b公因数中最大者。若a,b的最大公因数等于1,则称a,b互素。累次利用带余除法可以求出a,b的最大公因数,这种方法常称为辗转相除法。又称欧几里得算法。 § 基本性质 整除有下列基本性质:①若a|b,a|c,则a|b±c。(b>c) ②若a|b,则对任意c(0除外),a|bc。 ③对任意a,±1|a,±a|a。 ④若a|b,b|a,则|a|=|b数的整除特征 |。 对任意整数a,b,b>0,存在唯一的整数q,r,使a=bq+r,其中0≤r<b,这个事实称为带余除法定理,是整除理论的基础。 若c|a,c|b,则称c是a,b的公因数。若d是a,b的公因数,且d可被a,b的任意公因数整除则称d是a,b的最大公因数。当d≥0时,d是a,b公因数中最大者。若a,b的最大公因数等于1,则称a,b互素。累次利用带余除法可以求出a,b的最大公因数。 § 基本规律 整除规则第一条(1):任何数都能被1整除。整除规则第二条(2):个位上是2、4、6、8、0的数都能被2整除。整除规则第三条(3):每一位上数字之和能被3整除,那么这个数就能被3整除。整除规则第四条(4):最后两位能被4整除的数,这个数就能被4整除。 整除规则第五条(5):个位上是0或5的数都能被5整除。整除规则第六条(6):一个数只要能同时被2和3整除,那么这个数就能被6整除。整除规则第七条(7):把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。 整除规则第八条(8):最后三位能被8整除的数,这个数就能被8整除。整除规则第九条(9):每一位上数字之和能被9整除,那么这个数就能被9整除。整除规则第十条(10): 若一个整数的末位是0,则这个数能被10整除 。整除规则第十一条(11):若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!整除规则第十二条(12):若一个整数能被3和4整除,则这个数能被12整除。整除规则第十三条(13):若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。整除规则第十四条(14):a 若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。b 若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。整除规则第十五条(15):a 若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。b 若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。整除规则第十六条(16):若一个整数的末四位与前面5倍的隔出数的差能被23整除,则这个数能被23整除。整除规则第十七条(17):若一个整数的末四位与前面5倍的隔出数的差能被29整除,则这个数能被29整除。整除规则第十八条(18):若一个整数的末四位与前面的数的差能被73整除,则这个数能被73整除。整除规则第十九条(19):若一个整数的末四位与前面的数的差能被137整除,则这个数能被137整除。整除规则第二十条(20):若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除 。切记:0 不能做除数! § 与除尽的关系 整除与除尽既有区别又有联系.除尽是指数a除以数b(b≠0)所得的商是整数或有限小数而余数是零时,我们就说a能被b除尽(或说b能除尽a).因此整除与除尽的区别是,整除只有当被除数、除数以及商都是整数,而余数是零.除尽并不局限于整数范围内,被除数、除数以及商可以是整数,也可以是有限小数,只要余数是零就可以了.它们之间的联系就是整除是除尽的特殊情况. |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。