词条 | 太阳活动周期 |
释义 | § 简介 太阳活动周期 太阳活动周期,是太阳黑子数及其他现象的准周期变化,大约11年为一个周期。伴随着黑子群,将会有不同级别的日冕物质抛射(耀斑)现象。太阳黑子的11年基本周期(有时也称为太阳活动周期 )是施瓦贝于1843年宣布发现的。 太阳活动周期平均以11、22年为周期,在每个周期中,太阳黑子的磁极极性相反,而其他各种日面现象的变化也象黑子一样有两次高潮和两次低潮。这些日面现象包括日珥、耀斑和磁效应等的频数起伏,磁效应则包括极光和对地球上无线电干扰的增强。 太阳活动是太阳发射出的太阳辐射在总量上的变化。它们的组成有周期性的变化,主要是11年的太阳周期(或是太阳黑子周期),并且有非周期的波动。太阳活动对于地震、火山爆发、旱灾、水灾、人类心脏和神经系统的疾病,甚至交通事故都有关系。因此也形成了太阳活动预报这门学问。处于活动剧烈期的太阳(称为“扰动太阳”)辐射出大量紫外线、x射线、粒子流和强射电波,因而往往引起地球上极光、磁暴和电离层扰动等现象。 根据预测,第24太阳活动周期从2008年12月开始,2013年左右至峰值,其后,太阳黑子将逐渐减少。[1] § 观测要素 太阳黑子 太阳活动 在太阳的光球层上发生的一种太阳活动,太阳活动的基本标志。太阳黑子是太阳强烈的磁场活动抑制了对流的作用,因而使得于表面温度相对较低、颜色较暗的区域。太阳黑子的活动已经使用沃夫数测量了300年之久,这个索引(也称为苏黎世数)使用黑子的数量和群组数量两者补偿在测量上的变化。 光斑 太阳光球边缘出现的明亮组织,向外延伸到色球就是谱斑。光斑一般环绕着黑子,与黑子有密切的关系。 谱斑 太阳光球层上比周围更明亮的斑状组织。 太阳风 太阳风形成的带电粒子流造成了地球上的极光。 耀斑 发出的强大的短波辐射 ,会造成地球电离层的急剧变化。对人类的影响很大。造成短波通讯中断。 日珥 在日全食时,太阳的周围镶着一个红色的环圈,上面跳动着鲜红的火舌,这种火舌状物体就叫做日珥。 § 变化 太阳周期是太阳行为上的循环变化,许多可能的模式曾被建立起来,但在观测上只有11年和22年的周期是很清楚的被观察到。 11年:最明显的是黑子数量在大约11年的周期中逐渐增加和减少,也因为施瓦贝的观测被称为施瓦贝周期。巴布科模型以磁场的流出和卷入来解释此一周期。当太阳黑子增加时太阳表面的活动也最活跃,然而光度由于明亮的斑点也增加而没有改变(光斑)。 22 年:海尔周期,因乔治·埃勒里·海耳得名。在每一个施瓦贝周期,太阳的磁场都会扭转,因此磁极要两次扭转之后才会回到相同磁极的状态。 87年(70-100年): 格莱斯堡周期,因沃尔夫冈·格莱斯堡而得名,被认为是施瓦贝11年周期的调幅。 210年:Suess周期 。 2,300 年:哈尔斯塔周期。 其他曾经被侦测到的模式: 在碳-14:105、131、232、385、504、805、2,241年(Damon and Sonnett, 1991)。 在约2亿4千万年前的前二叠纪时期,在卡斯提尔的矿物层显示有2,500年的周期。 由于海洋对热的惰性,使受到太阳变化影响的气候敏感性产生更长周期的变化,并且减缓了变化的频率。Scafetta 和West (2005)发现气候的敏感度是22年周期的1.5倍,而强制对应于11年的周期,并且热惰性使得在气候循环中的温度变化大约滞后2.2年。 § 特征 太阳活动从高峰至低谷周期平均为11年。太阳最活跃时(太阳活动峰),其表面出现太阳黑子,频繁地产生喷发将大量的高温等离子体喷向四周。当等离子体组成的太阳风抵达地球时,能够影响电通信、供电网,导致卫星短路。 与此相反,太阳在最平静期(太阳活动谷),人们很少观察到太阳黑子和太阳喷发。不过,这种状况对地球仍有较大的影响,只不过影响地球的不是太阳风。例如,太阳活动谷时,地球外大气层缩小,对环绕地球飞行的太空垃圾的阻力减小;又如,太阳系中太阳风减弱时,宇宙空间的宇宙射线会更多地抵达地球。 通常太阳处于活动谷时,太阳表面无黑子的日子为300天。而在最近的太阳活动谷期间,出现了罕见的长时间无太阳黑子的现象:2008年至2010年间共有780天无太阳黑子,为1913年以来最长的时间。 [2] § 研究历史 太阳活动变化的最长久纪录是太阳黑子的变化。太阳黑子的第一次纪录大约是在西元前800年前的中国,最老的描绘纪录约在西元1128年。 在1610年,天文学家开始用望远镜纪录黑子和它们的运动,最初的研究聚焦于本质和行为。然而,黑子的物理性质直到20世纪能位被辨认,所以观测还在持续中。 在17世纪和18世纪,由于黑子的数目偏低,使得研究受到了阻碍,而现在认为是太阳活动低潮被延长的一段期间,如同所知的蒙德极小期。 在19世纪之前,已经有足够长的数值纪录可以推断黑子活动的周期性。 1843年,塞瑟尔·海因里希·施瓦布 (1789–1875)发现了太阳活动周期。 从1826年到1843年,施瓦布每天仔细观察看太阳表面,记录太阳上的黑子数,经过17年间的长期艰辛观测,他整理了观测资料,于1843年发表了一篇题为《1843年间的太阳观测》的论文,文章指出:“太阳的年平均黑子数具有周期性的变化,变化的周期约十年”。 在1845年,普林斯敦大学的教授约瑟夫·亨利和史蒂芬·亚历山大使用热电堆观测太阳,并且确认黑子的辐射比周围地区的太阳表面为低;稍后又观测到太阳的光斑发射出的辐射高于平均数值。 时任伯尔尼天文台台长的鲁道夫·沃尔夫(1816–1893),读了施瓦布的论文后,开始用望远镜观测太阳黑子。沃尔夫在搜集整理太阳黑子数观测资料的过程中,为使不同观测台站以及不同人的太阳黑子观测资料具有可比性,于1848年提出了太阳黑子相对数的概念。 到1852年他还发现地磁活动和极光与太阳活动有关。沃尔夫提出将太阳黑子数从一个极小到另一个极小之间的事件定为一个周期,并将1755年之1766年的周期定为第一个太阳活动周。根据连续的观测记录推算下来,2008是第24个太阳活动周。 大约在1900年,研究人员开始探索太阳活动和地球上天气间的关联性,特别值得注意的是查尔斯·格里利·阿布特的工作,因为他在史密松宁天文物理观测所(SAO)领导观察太阳辐射的变化。它的团队必须从发明测量太阳辐射的仪器开始,之后,当他成为SAO的领导人时,他在智利的卡拉玛建立太阳观测站,以补威尔逊山天文台在数据资料上的不足。他在273个月的海耳周期中找出了27个谐波的周期,包括7、13、和39个月的模式。他通过城市各个月的天气纪录,像是温度变化与降雨量与太阳活动匹配或反对太阳活动的趋势,寻找天气间的关联性。 随着树龄学的发展,像是沃尔多·S.·葛洛克等科学家注意到树木的生长和现存纪录上太阳活动周期之间的关联性,并且以长达世纪的太阳常数变化,推论千年尺度的年代学也有相似的变化。 统计学上的研究显示天气和气候与太阳活动的关联是世纪性的,数据回推至1801年,当威廉·赫歇尔注意到麦子的价格和黑子纪录之间有明显的关联性他们现在以来自表面的网络收集和气象卫星观察的数据作全球性高度密集的比对,以综合或观察研究太阳变异的作用如何通过地球气候系统散布的详细过程,并且/或强迫建立气候模型。 § 形成原因 科学家揭开太阳活动谷延迟之谜 天文学家对太阳黑子的活动从1755年开始标号统计,统计发现太阳黑子的平均活动周期为11.2年。黑子最少的年份为一个周期的开始年,称作“太阳活动极小年”,黑子最多的年份则称做“太阳黑子活动极大年”。 太阳处于活动周期的低谷时期时,太阳黑子和耀斑很少出现。在低谷期,天文学家曾观察到了一个细小太阳黑子的出现,然后在数个小时之后便消失了。 太阳黑子周围喷射出来的气体有100万度的高温,较暗的地方温度相对低一点,但也有20000度,从底部到顶部的高度约为7.5万英里 天文学家最近表示新一轮的太阳活动周期已经开始。太阳的一个平均周期为11年,在期间太阳活动会由平静到活跃,再回归平静。现在正处于太阳活动周期的低谷时期,太阳黑子和耀斑很少出现。太阳活动低谷期时天文学家观察到的一个细小太阳黑子出现,然后在数个小时之后便消失了。这是一种正常现象,但这颗黑子却是一颗磁极相反的黑子。美国阿拉巴马州太空飞行中心的太阳物理学家David Hathaway说:“我们一直在等待它的出现,它的出现标志着新一轮的太阳活动周期的开始。” 太阳黑子其实是太阳上的强磁场活动区,在那里物质从下想上涌动。上面的暗点就像一个苏打瓶的顶端,有时它们会爆发并将超热气体喷向太空之中。太阳黑子在太阳的某个区域里具有南北相反的两个磁极,7月31日出现的那个太阳黑子位于太阳上西经65度,南纬13度的地方,特别的是这颗黑子的南北极与通常该区域的黑子极性呈相反状态。Hathaway说:“现在正是太阳第23个活动周期的末期,2001年是这一太阳活动周期的高峰期。”他说,太阳的第24个活动周期随时有可能开始。可能7月31日那个反向黑子的出现就预示着新一轮太阳活动周期的开始这个细小的反向太阳黑子位于南纬13度的地方,可是预示太阳周期开始的太阳黑子一般比较靠近太阳的中部地区,大约在南纬30度和北纬30度之间。因此,Hathaway不能十分肯定太阳新一轮活动周期已经开始。而在19日另外一个天文学家小组宣称太阳新的周期的确已经开始了。这个小组使用美国国家天文台的SOLIS系统在太阳的极地附近发现了小规模的磁暴现象,这标志着太阳的新一轮活动周期的开始。天文学家表示,根据历史记录和电脑模拟,下一个太阳活动周期将比上个活动周期更加活跃。这将意味着位于太空中的卫星甚至地球上的电力系统将出现更多的故障。太阳风暴将会把大量带电粒子喷射到太空中,当它们与地球磁场接触作用的时候,就有可能进入到大气层底部,甚至到达地面。 § 影响 对人类生活的影响 随着太阳活动周的到来,太阳活动将逐渐增加,太阳耀斑和日冕无知抛射发生的次数将越来越多,高能带电粒子和强烈的电磁辐射不断袭击地球空间进而影响地球空间环境,干扰地球磁场和高空电离层,从而会使得短波无线通讯信号中断,军用,民用航空通信,全球定位系统信号,甚至手机和银行自动取款机都有可能受到干扰,影响人们的正常生活和生产活动。 在太空运行的人造卫星、飞行器、宇宙飞船和高空飞行的飞机,受到来自太阳的高能带电粒子的袭击,会造成有些零部件损坏导致整个设备系统不能正常工作。乘坐在飞机和飞行器上的飞行员和宇航员的身体也会受到来自太阳的高能带电粒子伤害。受太阳活动影响的还有长距离的高压输电系统和输油管道。 对地球气候的影响 通过在太阳活动周期与地球全球气候之间建立起的重要关联,美国国家大气研究中心科学家领导的一项科学研究发现,太阳活动的高峰期和活动的余波能够影响地球,导致地球太平洋热带出现类似拉尼娜和厄尔尼诺的现象。这项新的研究成果有望为人类预测气温和降雨铺平道路。 太阳黑子的活动周期为11年,在整个周期中,太阳到达地球的总能量变化仅为0.1%。数10年来,科学家一直在试图将抵达地球的太阳能量的变化与地球的自然天气和气候变化关联起来,同时将太阳能量变化对地球气候的影响与人类活动对气候的影响区别开来。 在过去研究工作的基础上,美国国家大气研究中心科学家借助全球气候计算机模型和超过百年的海洋温度数据,在太阳活动周期与地球气候这两者之间建立起内在的联系。相关文章发表在本月出版的《气候杂志》上。文章第一作者、美国国家大气研究中心科学家吉罗德·米尔认为,他们的研究所建立的新机制能帮助了解太阳活动高峰时对太平洋热带地区的影响。事实上,太阳释放的能量处于峰值时,它对热带地区的降雨量和世界许多地区的天气体系具有微妙但长远的影响。 研究表明,在太阳活动高峰期,太阳加热上空无云的太平洋地区导致海水蒸发加剧,从而增强了热带降雨和刮风,同时导致东太平洋降温。虽然1华氏度至2华氏度的降温发生在东太平洋较远的地区,但是上述海水蒸发、降雨刮风和降温等一系列情况产生的结果类同于出现了一次拉尼娜现象,只是其强度只有典型的拉尼娜现象的一半。 此外,在类同于拉尼娜现象发生后一年至两年间,随着缓慢移动的海流用较暖和的海水取代东热带太平洋的冷水,由太阳活动高峰引起的类拉尼娜现象将演变成类厄尔尼诺现象。同样,海洋产生的反应强度也只有典型厄尔尼诺现象的50%。研究者还需要对太阳活动对天气的影响进行更多的研究。该研究发现,由太阳活动引起的拉尼娜趋势会引起北美西部部分地区天气相对温暖而干燥。米尔说,根据他们对太阳周期活动的理解,他们可以将这些影响与天气概率建立联系,并加入到长期预报中。[3] 太阳黑子活动周期为11年,经历黑子数量由极大到极小的活动峰年与谷年,其活跃程度与地球气候存在关联。英国研究人员证实,太阳黑子周期活动规律性影响地球气候。在太阳黑子非活跃时期,北美和欧洲部分地区常遭遇极端天气。 帝国理工学院与牛津大学研究人员借助卫星数据,更为准确地测得地球上空太阳紫外线变化情况,发现数据波动超过先前预计,在他们所分析的2008年至2010年数据中,太阳黑子处于活动谷年。同一时期,美国与欧洲部分地区遭遇严冬。借助复杂计算机模型,研究人员模拟到长期气候状况,证实在太阳黑子活动谷年,异常冷空气在赤道大气上空形成,造成大气热量重新分配和大气环流变化,令欧洲北部和美国遭遇异常低温和暴风雪,加拿大和地中海地区气候则变得更为温和。进入活动峰年,情况则相反。研究结果2011年10月10日刊登于英国《自然-地学》杂志。论文第一作者、英国气象局研究员莎拉·伊尼森说:“对已观测到的太阳(黑子)变化与地区冬季气候间联系,研究予以了证实。” [4] 由太阳活动导致的其他影响 太阳微粒的交互作用、太阳磁场和地球的磁场,造成行星表面的微粒和磁场的变化,极端的太阳事件可能影响电子设备。太阳磁场的衰弱相信会始抵达地球大气的宇宙射线数量增加,改变抵达地球表面的微粒种类。它被推测的一种变化认为宇宙射线可能导致地球上某种云层数量的增加,影响地球的反照率。 地磁的效果 地球的极光是与太阳风、太阳磁场、地球磁场和地球的大气层交互作用创造出来的,其中的任何变化都会影响极光的类型。突然的变化会在地球磁场的分布上造成强烈的干扰,称为地磁风暴。 云的效果 在电离上的变化影响到在气溶胶内形成云层的核种的丰度。这样的结果,电离化的水平潜在性的影响到结露、低云、相对湿度和与云有关的反照率。由大量的凝结种核形成的云比较明亮,能长期存在,并且可能产生的降雨和雪较少。3%-4%的云量变化和云顶温度的变化与太阳周期的11年和22年相关联,但GCR的水平增加却在"反平行"循环。全球平均的云遮蔽率变化在1.5-2.0%。有些研究显示GCR和云量的变化在纬度高于50°是正相关的,但在低纬度却是负相关。然而,不是所有的科学家都相信统计的结果,并且规因于太阳的其他一些变化(即,紫外线的总辐照度变化)而不是直接对GCR变动。在解释这些交互作用的困难在于事实上太阳的可变性太多,许多方便都在同时变化,并且一些气候系统都有延迟反应。 银河宇宙射线 太阳活动的增加(更多的太阳黑子)会使在" 太阳风 "中电离的微粒增加,成为向外流失离开太阳的离子微粒,其中大多数都是质子和电子。地球磁场、太阳风和太阳磁场共同造成 银河宇宙射线(GCR)的偏转。太阳活动减弱,渗透进对流层和同温层的GCR就会增加。GCR的微粒是电离的主要来源,终止在对流层上1公里左右(在1公里之下,氡气是许多区域造成电离的主要来源)。GCR的水平被碳-14和铍-10的生成影响间接的记录下来。大约2300年的Hallstatt太阳周期反射在气候上的Dansgaard-Oeschger events。80-90年的Gleissberg周期再长度上取决于一并发生的11年太阳周期,并且看起来在这段时间也发生了相同的气候模式。 碳-14的产生 碳-14的生成(放射性碳:14C)也与太阳活动相关。碳-14是在大气上层产生的,当宇宙射线轰击大气层的氮(14N),导致氮进行β衰变,因而转换成不寻常的,原子量为14的碳同位素,而不是一般常见的原子量为12。矛盾的是,太阳活动的增加导致抵达地球大气层的宇宙射线减少,因而使14C的生成减少。这是因为宇宙射线在太阳系内会被太阳风的磁场向外排开。因而宇宙射线强度和碳-14的生成反比于活动的一般水平。因此,大气层的14C 在太阳黑子极大期是低值,当太阳黑子极小期时是高值。测量在树木中捕获的碳-14和记算年轮,放射性碳在木头年轮中的数量可以测量出对应的日期。过去10,000的14C重建展示出在中间-全新世的7,000年以前是高的,并且一直减少至1,000年前。除了在太阳活动上的变化之外,碳-14的升成和长期变化还受到地球磁场和生物圈的影响(特别是自最后一次冰河期以来与大片植物相关联的变化)。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。