词条 | 伯努利数 |
释义 | § 伯努利数 一般地,n>=1时,有B(2n+1)=0;n>=2时,有公式B(n)=∑[C(k,n)*B(k)](k:0->n)可用来逐一计算伯努利数。伯努利数在数论中很有用。例如,对于佩尔方程-=-4(≡1(mod4)是素数),N.C.安克尼和E.阿廷曾猜想它的最小解x0+(y0)*√(p)满足 ,1960年,L.J.莫德尔证明了在≡5(mod8)时,S.乔拉证明了在≡1(mod8)时,上述猜想等价于伯努利数B((p-1)/2)的分子不被整除。伯努利数还可用于费马大定理的论证中。设>3,如果伯努利数B,B,…,B(p-3)的每一个的分子不被整除,这样的素数叫正规素数,否则就叫非正规素数。 § 正文 18世纪瑞士数学家雅各布第一·伯努利引入的一个数。设伯努利数为Bn,其定义:这里|t|<2π。由计算知:B0=1, 一般地,n≥1时,有B2n+1=0;n≥2时,有公式可用来逐一计算伯努利数。伯努利数在数论中很有用。例如,对于佩尔方程x2-py2=-4(p呏1(mod4)是素数),N.C.安克尼和E.阿廷曾猜想它的最小解满足p凲y0,1960年,L.J.莫德尔证明了在p呏5(mod8)时,S.乔拉证明了在p呏1(mod8)时,上述猜想等价于伯努利数的分子不被p整除。伯努利数还可用于费马大定理的论证中。设p>3,如果伯努利数B2,B4,…,Bp-3的每一个的分子不被p整除,这样的素数p叫正规素数,否则就叫非正规素数。德国数学家E.E.库默尔证明了:当p为正规素数时,费马大定理成立。不难计算当3<p<100时,除开p=37,59,67以外,其余的素数都是正规素数。因此,在费马大定理的研究中,库默尔的结果是一项突破性的工作(见不定方程)。尽管有许多判别正规素数的法则,但是,是否有无穷多个正规素数,尚未解决。而非正规素数有无穷多个,早在1915年就被人们所证明。 § 配图 § 相关连接 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。