请输入您要查询的百科知识:

 

词条 伯努利
释义

§ 伯努利家族简介

伯努利

在科学史上,父子科学家、兄弟科学家并不鲜见,然而,在一个家族跨世纪的几代人中,众多父子兄弟都是科学家的较为罕见,其中,瑞士的伯努利家族最为突出。

伯努利家族3代人中产生了8位科学家,出类拔萃的至少有3位;而在他们一代又一代的众多子孙中,至少有一半相继成为杰出人物。伯努利家族的后裔有不少于120位被人们系统地追溯过,他们在数学、科学、技术、工程乃至法律、管理、文学、艺术等方面享有名望,有的甚至声名显赫。最不可思议的是这个家族中有两代人,他们中的大多数数学家,并非有意选择数学为职业,然而却忘情地沉溺于数学之中,有人调侃他们就像酒鬼碰到了烈酒。

老尼古拉·伯努利(Nicolaus Bernoulli,公元1623~1708年)生于巴塞尔,受过良好教育,曾在当地政府和司法部门任高级职务。他有3个有成就的儿子。其中长子雅各布(Jocob,公元1654~1705年)和第三个儿子约翰(Johann,公元1667~1748年)成为著名的数学家,第二个儿子小尼古拉(Nicolaus I,公元1662~1716年)在成为彼得堡科学院数学界的一员之前,是伯尔尼的第一个法律学教授。

§ 雅各布·伯努利生平

1654年12月27日,雅各布·伯努利生于巴塞尔,毕业于巴塞尔大学,1671年17岁时获艺术硕士学位。这里的艺术指“自由艺术”,包括算术、几何学、天文学、数理音乐和文法、修辞、雄辩术共7大门类。遵照父亲的愿望,他于1676年22岁时又取得了神学硕士学位。然而,他也违背父亲的意愿,自学了数学和天文学。1676年,他到日内瓦做家庭教师。从1677年起,他开始在那里写内容丰富的《沉思录》。

1678年和1681年,雅各布·伯努利两次外出旅行学习,到过法国、荷兰、英国和德国,接触和交往了许德、玻意耳、胡克、惠更斯等科学家,写有关于彗星理论(1682年)、重力理论(1683年)方面的科技文章。1687年,雅各布在《教师学报》上发表数学论文《用两相互垂直的直线将三角形的面积四等分的方法》,同年成为巴塞尔大学的数学教授,直至1705年8月16日逝世。

1699年,雅各布当选为巴黎科学院外籍院士;1701年被柏林科学协会(后为柏林科学院)接纳为会员。

许多数学成果与雅各布的名字相联系。例如悬链线问题(1690年),曲率半径公式(1694年),“伯努利双纽线”(1694年),“伯努利微分方程”(1695年),“等周问题”(1700年)等。

雅各布对数学最重大的贡献是在概率论研究方面。他从1685年起发表关于赌博游戏中输赢次数问题的论文,后来写成巨著《猜度术》,这本书在他死后8年,即1713年才得以出版。

最为人们津津乐道的轶事之一,是雅各布醉心于研究对数螺线,这项研究从1691年就开始了。他发现,对数螺线经过各种变换后仍然是对数螺线,如它的渐屈线和渐伸线是对数螺线,自极点至切线的垂足的轨迹,以极点为发光点经对数螺线反射后得到的反射线,以及与所有这些反射线相切的曲线(回光线)都是对数螺线。他惊叹这种曲线的神奇,竟在遗嘱里要求后人将对数螺线刻在自己的墓碑上,并附以颂词“纵然变化,依然故我”,用以象征死后永生不朽。

§ 伯努利数(Bernoulli Numbers)

伯努利数是18世纪瑞士数学家雅各布·伯努利引入的一个数。设伯努利数为B(n),它的定义为: t/(e^t-1)=∑[B(n)*(t^n)/(n!)](n:0->∞) 这里|t|<2。由计算知: B(0)=1,B(1)=-1/2, B(2)=1/6,B(3)=0, B(4)=-1/30,B(5)=0, B(6)=1/42,B(7)=0, B(8)=-1/30,B(9)=0), B(10)=5/66,B(11)=0, B(12)=-691/2730,B(13)=0, B(14)=7/6,B(15)=0, B(16)=-3617/510,B(17)=0, B(18)=43867/798,B(18)=0, B(20)=-174611/330 …… 一般地,n>=1时,有B(2n+1)=0;n>=2时,有公式B(n)=∑[C(k,n)*B(k)](k:0->n)可用来逐一计算伯努利数。伯努利数在数论中很有用。例如,对于佩尔方程-=-4(≡1(mod4)是素数),N.C.安克尼和E.阿廷曾猜想它的最小解x0+(y0)*√(p)满足 ,1960年,L.J.莫德尔证明了在≡5(mod8)时,S.乔拉证明了在≡1(mod8)时,上述猜想等价于伯努利数B((p-1)/2)的分子不被整除。伯努利数还可用于费马大定理的论证中。设>3,如果伯努利数B,B,…,B(p-3)的每一个的分子不被整除,这样的素数叫正规素数,否则就叫非正规素数。德国数学家E.E.库默尔证明了:当为正规素数时,费马大定理成立。不难计算当3<<100时,除开=37,59,67以外,其余的素数都是正规素数。因此,在费马大定理的研究中,库默尔的结果是一项突破性的工作(见不定方程)。尽管有许多判别正规素数的法则,但是,是否有无穷多个正规素数,尚未解决。而非正规素数有无穷多个,早在1915年就被人们所证明。

§ 约翰·伯努利生平

雅各布·伯努利的弟弟约翰·伯努利比哥哥小13岁,1667年8月6日生于巴塞尔,1748年1月1日卒于巴塞尔,享年81岁,而哥哥只活了51岁。

约翰于1685年18岁时获巴塞尔大学艺术硕士学位,这点同他的哥哥雅各布一样。他们的父亲老尼古拉要大儿子雅各布学法律,要小儿子约翰从事家庭管理事务。但约翰在雅各布的带领下进行反抗,去学习医学和古典文学。约翰于1690年获医学硕士学位,1694年又获得博士学位。但他发现他骨子里的兴趣是数学。他一直向雅各布学习数学,并颇有造诣。1695年,28岁的约翰取得了他的第一个学术职位——荷兰格罗宁根大学数学教授。10年后的1705年,约翰接替去世的雅各布任巴塞尔大学数学教授。同他的哥哥一样,他也当选为巴黎科学院外籍院士和柏林科学协会会员。1712、1724和1725年,他还分别当选为英国皇家学会、意大利波伦亚科学院和彼得堡科学院的外籍院士。

约翰的数学成果比雅各布还要多。例如解决悬链线问题(1691年),提出洛必达法则(1694年)、最速降线(1696年)和测地线问题(1697年),给出求积分的变量替换法(1699年),研究弦振动问题(1727年),出版《积分学教程》(1742年)等。

约翰与他同时代的110位学者有通信联系,进行学术讨论的信件约有2500封,其中许多已成为珍贵的科学史文献,例如同他的哥哥雅各布以及莱布尼茨、惠更斯等人关于悬链线、最速降线(即旋轮线)和等周问题的通信讨论,虽然相互争论不断,特别是约翰和雅各布互相指责过于尖刻,使兄弟之间时常造成不快,但争论无疑会促进科学的发展,最速降线问题就导致了变分法的诞生。

约翰的另一大功绩是培养了一大批出色的数学家,其中包括18世纪最著名的数学家欧拉、瑞士数学家克莱姆、法国数学家洛必达,以及他自己的儿子丹尼尔和侄子尼古拉二世等。

§ 丹尼尔·伯努利生平

人物简介

丹尼尔·伯努利,(Daniel Bernoulli 1700~1782)瑞士物理学家、数学家、医学家。1700年2月8日生于荷兰格罗宁根。著名的伯努利家族中最杰出的一位。他是数学家J.伯努利的次子,和他的父辈一样,违背家长要他经商的愿望,坚持学医,他曾在海得尔贝格、斯脱思堡和巴塞尔等大学学习哲学、论理学、医学。1721年取得医学硕士学位。努利在25岁时(1725)就应聘为圣彼得堡科学院的数学院士。8年后回到瑞士的巴塞尔,先任解剖学教授,后任动力学教授,1750年成为物理学教授。

在1725~1749年间,伯努利曾十次荣获法国科学院的年度奖。

1782年3月17日,伯努利在瑞士巴塞尔逝世,终年82岁。

个人经历

约翰·伯努利想迫使他的第二个儿子丹尼尔去经商,但丹尼尔在不由自主地陷进数学之前,曾宁可选择医学成为医生。

丹尼尔(Daniel,公元1700~1782年)出生于荷兰的格罗宁根,1716年16岁时获艺术硕士学位;1721年又获医学博士学位。他曾申请解剖学和植物学教授职位,但未成功。

丹尼尔受父兄影响,一直很喜欢数学。1724年,他在威尼斯旅途中发表《数学练习》,引起学术界关注,并被邀请到圣彼得堡科学院工作。同年,他还用变量分离法解决了微分方程中的里卡提方程。1725年,25岁的丹尼尔受聘为圣彼得堡的数学教授。1727年,20岁的欧拉(后人将他与阿基米德、艾萨克·牛顿、高斯并列为数学史上的“四杰”),到圣彼得堡成为丹尼尔的助手。

然而,丹尼尔认为圣彼得堡那地方的生活比较粗鄙?摇,以至于8年以后的1733年,他找到机会返回巴塞尔,终于在那儿成为解剖学和植物学教授,最后又成为物理学教授。

1734年,丹尼尔荣获巴黎科学院奖金,以后又10次获得该奖金。能与丹尼尔媲美的只有大数学家欧拉。丹尼尔和欧拉保持了近40年的学术通信,在科学史上留下一段佳话。

在伯努利家族中,丹尼尔是涉及科学领域较多的人。他出版了经典著作《流体动力学》(1738年);研究弹性弦的横向振动问题(1741~1743年),提出声音在空气中的传播规律(1762年)。他的论著还涉及天文学(1734年)、地球引力(1728年)、湖汐(1740年)、磁学(1743、1746年),振动理论(1747年)、船体航行的稳定(1753、1757年)和生理学(1721、1728年)等。凡尼尔的博学成为伯努利家族的代表。

丹尼尔于1747年当选为柏林科学院院士,1748年当选巴黎科学院院士,1750年当选英国皇家学会会员。他一生获得过多项荣誉称号。

科学成就

1.在物理学上的贡献有:

(1)1738年出版了《流体动力学》一书,共13章。这是他最重要的著作。书中用能量守恒定律解决流体的流动问题,写出了流体动力学的基本方程,后人称之为“伯努利方程”,提出了“流速增加、压强降低”的伯努利原理。

(2)他还提出把气压看成气体分子对容器壁表面撞击而生的效应,建立了分子运动理论和热学的基本概念,并指出了压强和分子运动随温度增高而加强的事实。

(3)从1728年起,他和欧拉还共同研究柔韧而有弹性的链和梁的力学问题,包括这些物体的平衡曲线,还研究了弦和空气柱的振动。

(4)他曾因天文测量、地球引力、潮汐、磁学、洋流、船体航行的稳定、土星和木星的不规则运动和振动理论等成果而获奖。

2.在数学方面,有关微积分、微分方程和概率论等,他也做了大量而重要的工作。

伯努利定律

11

在一个流体系统,比如气流、水流中,流速越快,流体产生的压力就越小,这就是被称为“流体力学之父”的丹尼尔·伯努利1738年发现的“伯努利定律”。 这个压力产生的力量是巨大的,空气能够托起沉重的飞机,就是利用了伯努利定律。飞机机翼的上表面是流畅的曲面,下表面则是平面。这样,机翼上表面的气流速度就大于下表面的气流速度,所以机翼下方气流产生的压力就大于上方气流的压力,飞机就被这巨大的压力差“托住”了。当然了,这个压力到底有多大,一个高深的流体力学公式“伯努利方程”会去计算它。

方程式

伯努利方程

v=流动速度 伯努利定律 g=地心加速度(地球)

h=流体处于的高度(从某参考点计)

p=流体所受的压强

ρ=流体的密度

伯努利方程

伯努利理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体 ,方程为p+ρgz+(1/2)*ρv^2=C 式中p、ρ、v分别为流体的压强、密度和速度;z 为铅垂高度;g为重力加速度。

上式各项分别表示单位体积流体的压力能 p、重力势能ρg z和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压 、动压和总压。显然 ,流动中速度增大,压强就减小;速度减小, 压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小 ,因而合力向上。 据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项

伯努利效应

1726年,伯努利通过无数次实验,发现了“边界层表面效应”:流体速度加快时,物体与流体接触的界面上的压力会减小,反之压力会增加。为纪念这位科学家的贡献,这一发现被称为“伯努利效应”。伯努利效应适用于包括气体在内的一切流体,是流体作稳定流动时的基本现象之一,反映出流体的压强与流速的关系,流速与压强的关系:流体的流速越大,压强越小;流体的流速越小,压强越大。

比如,管道内有一稳定流动的流体,在管道不同截面处的竖直开口细管内的液柱的高度不同,表明在稳定流动中,流速大的地方压强小,流速小的地方压强大。这一现象称为“伯努利效应”。伯努利方程:p+1/2pv^2=常量。

在列车站台上都划有安全线。这是由于列车高速驶来时,靠近列车车厢的空气将被带动而运动起来,压强就减小,站台上的旅客若离列车过近,旅客身体前后出现明显压强差,将使旅客被吸向列车而受伤害。

伯努利效应的应用举例:飞机机翼、 喷雾器、汽油发动机的汽化器、球类比赛中的旋转球。

§ 家族的相关轶事

著名的伯努利家族曾产生许多传奇和轶事。对于这样一个既有科学天赋然而又语言粗暴的家族来说,这似乎是很自然的事情。一个关于丹尼尔的传说这是样的:有一次在旅途中,年轻的丹尼尔同一个风趣的陌生人闲谈,他谦虚地自我介绍说:“我是丹尼尔·伯努利。”陌生人立即带着讥讽的神情回答道:“那我就是艾萨克·牛顿!”

随便看

 

百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/19 6:04:31