词条 | pmml |
释义 | PMML全称预言模型标记语言(Predictive Model Markup Language),利用XML描述和存储数据挖掘模型,是一个已经被W3C所接受的标准。MML是一种基于XML的语言,用来定义预言模型。它为各个公司定义预言模型和在不同的应用程序之间共享模型提供了一种快速并且简单的方式。通过使用标准的XML解析器对PMML进行解析,应用程序能够决定模型输入和输出的数据类型,模型详细的格式,并且按照标准的数据挖掘术语来解释模型的结果。 PMML提供了一个灵活机制来定义预言模型的模式,同时支持涉及多个预言模型的模型选择和模型平衡(model averaging)。对于那些需要全部学习(ensemble learning)、部分学习(partitioned learning)和分布式学习(distributed learning)的应用程序,这种语言被证明是非常有用的。另外,它使得在不同的应用程序和系统之间移动预言模型变得容易、方便。特别地,PMML非常适合部分学习、元学习、分布式学习、以及相关领域。 PMML的模型定义由以下几部分组成: 头文件 数据模式 数据挖掘模式 预言模型模式 预言模型定义 全体模型定义 选择与联合模型和全体模型的规则 异常处理规则 其中,预言模型的模式和预言模型定义组件是必需的,其他可选。 数据挖掘模型包括预言模型和描述模型,因此,PMML并不是全面的数据挖掘模型定义语言。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。