请输入您要查询的百科知识:

 

词条 拉布拉斯变换
释义

拉布拉斯变换是工程数学中常用的一种积分变换。

1、对数与指数的变换

为求乘积ab

可先取对数 ln(ab)= lna+lnb

再取指数运算

2、相量与正弦量的变换

为了计算正弦稳态响应,可将激励源变为相量,然后在频率域里求相量(即相量法),然后再变回时域得到正弦时间函数响应。

其中 此复数的模 就是正弦量u(t)的振幅值,幅角就是u(t)的初相角。这种对应关系就是一种变换。

一.拉普拉斯变换

定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数

其中,S=σ+jω 是复参变量,称为复频率。

左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;

右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。

以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。

如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为

其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。

这是复变函数的积分

拉氏变换和拉氏反变换可简记如下

F(S)=L[f(t)] ; f(t)=L-1[F(s)]

当 >0时,结果为有限值即

具体的说,即Re[s]- Re[a]=σ- Re[a] > 0 有σ> Re[a]这时eatε(t)的拉氏变换存在。我们称σ> Re[a]的s=σ+jω的范围为该函数的拉氏变换的收敛域,一般而言,对一个具体的单边函数f(t),并非所有的σ值都能使f(t)eσt绝对可积,即把能使用f(t)eσt绝对可积的s的范围称为单边函数f(t)的拉氏变换的收敛域。

收敛域可以在s平面上表示出来

假定以下需进行拉氏变换的函数,其拉氏变换都存在

1、线性组合定理

L[af1(t)±bf2(t)]=aL[f1(t)]±b[f2(t)]

若干个原函数的线性组合的象函数,等于各个原函数的象函数的线性组合

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/27 18:12:27