词条 | 空集 |
释义 | 空集的定义:不含任何元素的集合称为空集。空集的性质:空集是一切集合的子集。 简介表示方法:用符号φ表示。 对任意集合 A,空集是 A 的子集; ?A: {} ? A 对任意集合 A, 空集和 A 的并集为 A: ?A: A ∪ {} = A对任意集合 A, 空集和 A 的交集为空集:?A: A ∩ {} = {} 对任意集合 A, 空集和 A 的笛卡尔积为空集: ?A: A × {} = {} 空集的唯一子集是空集本身: ?A: A ? {} ? A = {} 空集的元素个数(即它的势)为零;特别的,空集是有限的: |{}| = 0 集合论中,两个集合相等,若它们有相同的元素;那么仅可能有一个集合是没有元素的,即空集是唯一的。 考虑到空集是实数线(或任意拓扑空间)的子集,空集既是开集、又是闭集。空集的边界点集合是空集,是它的子集,因此空集是闭集。空集的内点集合也是空集,是它的子集,因此空集是开集。另外,空集是紧致集合,因为所有的有限集合是紧致的。 空集的闭包是空集。 电脑上按住Alt,再按0216即可打出空集符号 Ø 常见问题空集不是无;它是内部没有元素的集合,而集合就是有。这通常是初学者的一个难点。将集合想象成一个装有其元素的袋子的想法或许会有帮助;袋子可能是空的,但袋子本身确实是存在的。 有些人会想不通上述第一条性质,即空集是任意集合 A 的子集。按照子集的定义,这条性质是说 {} 的每个元素 x都属于 A。若这条性质不为真,那 {} 中至少有一个元素不在 A 中。由于 {} 中没有元素,也就没有 {} 的元素不属于 A 了,得到 {} 的每个元素都属于 A, 即 {} 是 A 的子集。 公理集合论在诸如策梅罗-弗兰克尔集合论的公理集合论中,空集的存在性是由空集公理确定的。空集的唯一性由外延公理得出。 使用分离公理,任何陈述集合存在性的公理将隐含空集公理。例如:若 A 是集合,则分离公理允许构造集合 B = {x in A | x ≠ x},它就可以被定义为空集。 空集的运算空集(作为集合)上的运算也可能使人迷惑。(这是一种空运算。)例如:空集元素的和为 0,而它们的积为 1(见空积)。这可能看上去非常奇怪,空集中没有元素,他们是怎么相加和相乘的呢?最终,这些运算的结果更多被看成是运算的问题,而不是空集的。比如,可以注意到 0 是加法的单位元,而 1 是乘法的单位元。 空集和 0根据定义,空集有 0 个元素,或者称其视为 0。然而,这两者的关系可能更进一步:在标准的自然数的集合论定义中,0 被定义为空集。 空集的范畴论若 A 为集合,则恰好存在从 {} 到 A 的函数 f,即空函数。结果,空集是集合和函数的范畴的唯一初始对象。 空集只能通过一种方式转变为拓扑空间,即通过定义空集为开集;这个空拓扑空间是有连续映射的拓扑空间的范畴的唯一初始对象。 空集是任何非空集合的真子集。.Φ 只有一个子集,没有真子集。{Φ }有两个子集,一个是Φ 一个是它本身 定义: 不含任何元素的集合成为空集。 A={1,2,3,4,5} B={1,3,5} c={5,4,3,2,1} 例如,“A是B的子集”,意思是A的任何一个元素都是B的元素,即由任一 ,可以推出 ,但不能把A是B的子集解释成A是由B中部分元素所组成的集合.因为B的子集也包括它本身,而这个子集是由B的全体元素组成的. 空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的真子集解释成A是由B的部分元素组成的集合也是不确切的.正确的说法应该把真子集的两个特征:“A是B的子集”和“B中至少有一个元素不属于A”都指出. “空集是任何集合的子集”这句话是正确的,但是把空集说成是任何集合的真子集就不确切.因为空集是它本身的子集.正确的说法是“空集是任何非空集合的真子集”.总之,对于概念的解释,语言表达必须确切. 再如,“ AB是A在全集B中的补集”,不能把它简单地说成 AB是A的补集,因为补集的概念是相对而言的,集合A在不同的全集中的补集是不同的,所以在描述补集概念时,一定要注明是在哪个例如,属于符号“ ”、不属于符号“ ”,它们只能用在元素与集合符号之间;包含关系“ ”“ ”、包含于(被包含)符号“ ”或“ ”,它们只能用在两个集合符号之间.对此,必须引起学生充分注意,不能用错,不要出现把 表示成 ,或 之类的错误. 又如, 是含有一个元素的集合, 是不含任何元素的集合,因此,有 ,不能写成 , . 关于子集与真子集的记法,教科书中采用的是新的国家标准,与原教科书不尽相同,应该注意. 关于补集,新的国家标准规定,集合A中子集B的补集或余集记为C A B ,如果行文中集合A已经很明确,则常常可以省去符号A,而记为C B. 集合中的补集,简单的说集合A的补集是没有意义的. |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。