词条 | 可导 |
释义 | 设y=f(x)是一个单变量函数, 如果y在x=x[0]处存在导数y'=f'(x),则称y在x=x[0]处可导。 如果一个函数在x[0]处可导,那么它一定在x[0]处是连续函数 函数可导定义:(1)若f(x)在x0处连续,则当a趋向于0时, [f(x0+a)-f(x0)]/a存在极限, 则称f(x)在x0处可导. (2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导. 函数可导的条件 如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来: |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。