词条 | 柯西极限存在准则 |
释义 | 定义:柯西极限存在准则又叫柯西审敛原理,给出了数列收敛的充分必要条件。数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>N,n>N时就有 |Xn-Xm|<ε 这个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,在数轴上一切具有足够大号码的点Xn中,任意两点间的距离小于ε . 正确性证明: 1..充分性证明: 充分性证明: (1)、首先证明Cauchy列有界 取ε=1,根据Cauchy列定义,取自然数N,当n>N时有c |a(n)-a(N)|<ε=1 由此得: |a(n)|=|a(n)-a(N)+a(N)|<=|a(n)-a(N)|+|a(N)|<1+|a(N)| (通俗理解,a(n)无论怎么样也大不过a(N)绝对值加1,显然根据经验这是有界的。但数学里需要严格的表达,下面因为N前的N-1个项,有最大值,所以得出了有界). 令: M=Max{|a(1),a(2),……,|a(N)|,|a(N)|+1} 这样就证明了,对于任何n都有a(n)<=M。 所以Cauchy列有界。 (2)、其次在证明收敛 因为Cauchy列有界,所以根据Bozlano-Weierstrass定理(有界数列有收敛子列)存在一个子列aj(n)以A为极限。那么下面就是要证明这个极限A也就是是Cauchy列的极限。(注意这种证明方法是实数中常用的方法:先取点性质,然后根据实数稠密性,考虑点领域的性质,然后就可以证明整个实数域的性质了) 因为Cauchy列{a(n)}的定义,对于任意的ε>0,都存在N,使得m、n>N时有 |a(m)-a(n)|<ε/2 取子列{aj(n)}中一个j(k),其中k>N,使得 |aj(k)-A|<ε/2 因为j(k)>=k>N,所以凡是n>N时,我们有 |a(n)-A|<=|a(n)-aj(k)|+|aj(k)-A|<ε/2+ε/2=ε 这样就证明了Cauchy列收敛于A. 即得结果:Cauchy列收敛 2..必要性证明 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。