词条 | 几何变换 |
释义 | 在几何的解题中,当题目给出的条件显得不够或者不明显时,我们可以将图形作一定的变换,这样将有利于发现问题的隐含条件,抓住问题的关键和实质,使问题得以突破,找到满意的解答.图形变换是一种重要的思想方法,它是一种以变化的、运动的观点来处理孤立的、离散的问题的思想,很好地领会这种解题的思想实质,并能准确合理地使用,在解题中会收到奇效,也将有效地提高思维品质. 初中图形变换包含平移、翻折和旋转,我们要通过实验、操作、观察和想象的方法掌握运动的本质,在图形的运动中找到不变量,然后解决问题。 几何变换的定义几何变换是建立在集合的变换与映射基础上的。 设T是平面π的一个变换,F是平面上的一个图形(即平面的一个子集),令 F'=T(F)={T(A)|A属于F} 那么,图形F'称为图形F在变换T下的像,T是一个几何变换。 基本性质如果平面上一个点A满足T(A)=A,那么A称为T的不动点;如果图形F满足T(F)=F,那么F是T的不变图形。 如果对于平面上任意两点A,B与其象点T(A),T(B),总有AB=T(A)T(B),那么称T为合同变换 如果存在一个常数k,使AB=T(A)T(B)/k,那么称T为相似变换,k为相似系数或相似比 保持角的方向不变的相似变换为真正相似变换,角的方向相反的为镜像相似变换。 两图形真正相似也称顺相似或同向相似,镜像相似也称逆相似。 一、翻折变换内容提要:翻折变换是平面到自身的变换,若存在一条直线l,使对于平面上的每一点P及其对应点P′,其连线PP′都被定直线l垂直平分,则称这种变换为翻折变换,定直线l称为对称轴.翻折变换有如下性质: (1)把图形变为与之全等的图形; (2)关于l对称的两点连线被l垂直平分. 证题过程中使用翻折变换,可保留原有图形的性质,且使原来分散条件相对集中,以利于问题的解决. 二、平移变换内容提要:平移变换是平面到自身的变换,将平面上任一点P变换到P′,使得:(1)射线PP′有给定的方向;(2)线段PP′有给定的长度.则称这种变换为平移变换.在平移变换下,图形变为与之全等的图形,直线变为与之平行的直线. 在解几何问题时,常利用平移变换使分散的条件集中在一起,具有更紧凑的位置关系或变换成更简单的基本图形. 三、旋转变换内容提要: 旋转变换是平面到它自身的变换,使原点O变换到它自身,其他任何点X变到X′,使得:(1)OX′=OX;(2)∠XOX′=θ(定角).则称这样的变换为旋转变换,O称为旋转中心.旋转变换保持图形全等,但图形方位可能有变化.在几何解题中,旋转的作用是使原有图形的性质得以保持,但改变其位置,使能组合成新的有利论证的图形. 竞赛知识点拨一、 平移变换 1. 定义 设是一条给定的有向线段,T是平面上的一个变换,它把平面图形F上任一点X变到X‘,使得=,则T叫做沿有向线段的平移变换。记为XX’,图形FF‘ 。 2. 主要性质 在平移变换下,对应线段平行且相等,直线变为直线,三角形变为三角形,圆变为圆。两对应点连线段与给定的有向线段平行(共线)且相等。 二、 轴对称变换 1. 定义 设l是一条给定的直线,S是平面上的一个变换,它把平面图形F上任一点X变到X’,使得X与X‘关于直线l对称,则S叫做以l为对称轴的轴对称变换。记为XX’,图形FF‘ 。 2. 主要性质 在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分。 三、 旋转变换 1. 定义 设α是一个定角,O是一个定点,R是平面上的一个变换,它把点O仍变到O(不动点),而把平面图形F上任一点X变到X’,使得OX‘=OX,且∠XOX’=α,则R叫做绕中心O,旋转角为α的旋转变换。记为XX‘,图形FF’ 。 其中α<0时,表示∠XOX‘的始边OX到终边OX’的旋转方向为顺时针方向;α>0时,为逆时针方向。 2. 主要性质 在旋转变换下,对应线段相等,对应直线的夹角等于旋转角。 四、 位似变换 1. 定义 设O是一个定点,H是平面上的一个变换,它把平面图形F上任一点X变到X‘,使得 =k·,则H叫做以O为位似中心,k为位似比的位似变换。记为XX’,图形FF‘ 。 其中k>0时,X’在射线OX上,此时的位似变换叫做外位似;k<0时, X‘在射线OX的反向延长线上,此时的位似变换叫做内位似。 2. 主要性质 在位似变换下,一对位似对应点与位似中心共线;一条线上的点变到一条线上,且保持顺序,即共线点变为共线点,共点线变为共点线;对应线段的比等于位似比的绝对值,对应图形面积的比等于位似比的平方;不经过位似中心的对应线段平行,即一直线变为与它平行的直线;任何两条直线的平行、相交位置关系保持不变;圆变为圆,且两圆心为对应点;两对应圆相切时切点为位似中心。 竞赛例题剖析【例1】P是平行四边形ABCD内一点,且∠PAB=∠PCB。 求证:∠PBA=∠PDA。 【分析】作变换△ABP△DCP’, 则△ABP≌△DCP‘,∠1=∠5,∠3=∠6。由PP’ADBC,ADPP‘、PP’CB都是平行四边形,知∠2=∠8,∠4=∠7。由已知∠1=∠2,得∠5=∠8。 ∴P、D、P‘、C四点共圆。故∠6=∠7,即∠3=∠4。【例2】“风平三角形”中,AA’=BB‘=CC’=2,∠AOB‘=∠BOC’=60°。 求证:S△AOB‘+S△BOC’+S△COA‘<。 【分析】作变换△A’OC△AQR‘,△BOC’△B‘PR’‘,则R’、R‘’重合,记为R。P、R、Q共线,O、A、Q共线,O、B‘、P共线,△OPQ为等边三角形。 ∴S△AOB’+S△BOC‘+S△COA’<S△OPQ= 【例3】在两条对角线长度以及夹角一定的所有凸四边形中,试求周长最小的四边形。 【分析】取AC、BD的中点E、F,令ACA‘C’,则A‘BC’D是一个符合条件的平行四边形。延长AF、CC‘交于G。 ∵E是AC的中点且EF∥CC’,FC‘∥EC,∴F、C’分别为AG、CG的中点。 ∴AD+BC=BG+BC≥2BC‘=A’D+BC‘。 同理可得AB+DC≥A’B+DC‘。 故当四边形为平行四边形时,周长最小。 【评注】当已知条件分散,尤其是相等的条件分散,而又不容易找出证明途径,或题目中有平行条件时,将图形的某一部分施行平移变换,常常十分凑效。 【例4】P是⊙O的弦AB的中点,过P点引⊙O的两弦CD、EF,连结DE交AB于M,连结CF交AB于N。求证:MP=NP。(蝴蝶定理) 【分析】设GH为过P的直径,FF’F,显然‘∈⊙O。又P∈GH,∴PF’=PF。∵PFPF‘,PAPB,∴∠FPN=∠F’PM,PF=PF‘。 又FF’⊥GH,AN⊥GH,∴FF‘∥AB。∴∠F’PM+∠MDF‘=∠FPN+∠EDF’ =∠EFF‘+∠EDF’=180°,∴P、M、D、F‘四点共圆。∴∠PF’M=∠PDE=∠PFN。 ∴△PFN≌△PF‘M,PN=PM。 【评注】一般结论为:已知半径为R的⊙O内一弦AB上的一点P,过P作两条相交弦CD、EF,连CF、ED交AB于M、N,已知OP=r,P到AB中点的距离为a,则。(解析法证明:利用二次曲线系知识) 【例5】⊙O是给定锐角∠ACB内一个定圆,试在⊙O及射线CA、CB上各求一点P、Q、R,使得△PQR的周长为最小。 【分析】在圆O上任取一点P0,令P0P1,P0P2,连结P1P2分别交CA、CB于Q1、R1。显然△P0Q1R1是在取定P0的情况下周长最小的三角形。 设P0P1交CA于E,P0P2交CB于F,则P0Q1 +Q1R1 +R1P0= P1P2=2EF。 ∵E、C、F、P0四点共圆,CP0是该圆直径,由正弦定理,EF=CP0sin∠ECF。 ∴当CP0取最小值时,EF为最小,从而△P0Q1R1的周长为最小,于是有作法: 连结OC,交圆周于P,令PP1,PP2,连结P1P2分别交CA、CB于Q、R。则P、Q、R为所求。 【例6】△ABC中,∠A≥90°,AD⊥BC于D,△PQR是它的任一内接三角形。求证:PQ+QR+RP>2AD。 【分析】设PP’,PP‘’。则RP=RP‘,PQ=P’‘Q,AP=AP’=AP‘’。 ∴PQ+QR+RP= P‘’Q+QR+RP‘。 又∠A≥90°,∴∠P’AP+∠P‘’AP=2∠A≥180°,A点在线段P‘P’‘上或在凸四边形P’RQP‘’的内部。∴P‘’Q+QR+RP‘>AP’+AP‘’=2AP>2AD。 ∴PQ+QR+RP>2AD。 【评注】如果题设中有角平分线、垂线,或图形是等腰三角形、圆等轴对称图形,可以将图形或其部分进行轴对称变换。此外,也可以适当选择对称轴将一些线段的位置变更,以便于比较它们之间的大小。 【例7】以△ABC的边AB、AC为斜边分别向外作等腰直角三角形APB、AQC,M是BC的中点。求证:MP=MQ,MP⊥MQ。 【分析】延长BP到E,使PE=BP,延长CQ到F, 使QF=CQ,则△BAE、△CAF都是等腰三角形。 显然:EB,CF,∴EC=BF,EC⊥BF。 而PMEC,MQBF,∴MP=MQ,MP⊥MQ。 【例8】已知O是△ABC内一点,∠AOB=∠BOC=∠COA=120°;P是△ABC内任一点,求证:PA+PB+PC≥OA+OB+OC。(O为费马点) 【分析】将CC‘,OO’, PP‘,连结OO’、PP‘。则△B OO’、△B PP‘都是正三角形。 ∴OO’=OB,PP‘ =PB。显然△BO’C‘≌△BOC,△BP’C‘≌△BPC。 由于∠BO’C‘=∠BOC=120°=180°-∠BO’O,∴A、O、O‘、C’四点共线。 ∴AP+PP‘+P’C‘≥AC’=AO+OO‘+O’C‘,即PA+PB+PC≥OA+OB+OC。 【例9】⊙O与△ABC的三边BC、CA、AB分别交于点A1、A2、B1、B2、C1、C2,过上述六点分别作所在边的垂线a1、a2、b1、b2、,设a1、b2、c1三线相交于一点D。求证:a2、b1、c2三线也相交于一点。 【分析】∵a1、a2关于圆心O成中心对称, ∴a1a2。 同理,b1b2,c1c2。 ∴a1、b2、c1的公共点D在变换R(O,180°)下的像D’也是像a2、b1、c2的公共点,即a2、b1、c2三线也相交于一点。 【例10】AD是△ABC的外接圆O的直径,过D作⊙O的切线交BC于P,连结并延长PO分别交AB、AC于M、N。求证:OM=ON。 【分析】设OO‘,NN’,而MB, ∵M、O、N三点共线,∴B、O‘、N’三点共线,且。 取BC中点G,连结OG、O‘G、DG、DB。 ∵∠OGP=∠ODP=90°,∴P、D、G、O四点共圆。 ∴∠ODG=∠OPG,而由MN∥BN’有∠OPG=∠O‘BG, ∴∠ODG=∠O’BG,∴O‘、B、D、G四点共圆。 ∴∠O’GB=∠O‘DB。而∠O’DB=∠ACB,∴∠O‘GB=∠ACB,O’G∥AC, 而G是BC的中点,∴O‘是BN’的中点,O‘B= O’ N‘, ∴OM=ON。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。