请输入您要查询的百科知识:

 

词条 极坐标系
释义

极坐标系

polar coordinates

在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。当限制ρ≥0,0≤θ<2π时,平面上除极点Ο以外,其他每一点都有唯一的一个极坐标。极点的极径为零 ,极角任意。若除去上述限制,平面上每一点都有无数多组极坐标,一般地 ,如果(ρ,θ)是一个点的极坐标 ,那么(ρ,θ+2nπ),(-ρ,θ+(2n+1)π),都可作为它的极坐标,这里n 是任意整数。平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r 等速螺线的极坐标方程为ρ=aθ 。此外,椭圆 、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。

极坐标系到直角坐标系的转化:

在极坐标系与平面直角坐标系(笛卡尔坐标系)间转换 极坐标系中的两个坐标 ρ和 θ可以由下面的公式转换为 直角坐标系下的坐标值

x=ρcosθ

y=ρsinθ

由上述二公式,可得到从直角坐标系中xy两坐标如何计算出极坐标下的坐标

θ=arctany/x ( x不等于0)

x= 0的情况下:若 y为正数 θ= 90° (π/2 radians);若 y为负,则 θ= 270° (3π/2 radians).

极坐标的方程

用极坐标系描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数。

极坐标方程经常会表现出不同的对称形式,如果r(?θ) = r(θ),则曲线关于极点(0°/180°)对称,如果r(π?θ) = r(θ),则曲线关于极点(90°/270°)对称,如果r(θ-α) = r(θ),则曲线相当于从极点逆时针方向旋转α°。

方程为r(θ) = 1的圆。

在极坐标系中,圆心在(r0, φ) 半径为 a 的圆的方程为r^2-2rr0cos(θ-φ)+r0^2=a^2

该方程可简化为不同的方法,以符合不同的特定情况,比如方程r(θ)=a表示一个以极点为中心半径为a的圆。

直线

经过极点的射线由如下方程表示θ=φ

,其中φ为射线的倾斜角度,若 m为直角坐标系的射线的斜率,则有φ = arctan m。 任何不经过极点的直线都会与某条射线垂直。 这些在点(r0, φ)处的直线与射线θ = φ 垂直,其方程为

r(θ)=r0sec(θ-φ)

玫瑰线

一条方程为 r(θ) = 2 sin 4θ的玫瑰线。

极坐标的玫瑰线(polar rose)是数学曲线中非常著名的曲线,看上去像花瓣,它只能用极坐标方程来描述,方程如下:

r(θ)=a cos kθ

r(θ)=a sin kθ

OR如果k是整数,当k是奇数时那么曲线将会是k个花瓣,当k是偶数时曲线将是2k个花瓣。如果k为非整数,将产生圆盘(disc)状图形,且花瓣数也为非整数。注意:该方程不可能产生4的倍数加2(如2,6,10……)个花瓣。变量a代表玫瑰线花瓣的长度。

阿基米德螺线

方程 r(θ) = θ for 0 < θ < 6π的一条阿基米德螺线。

阿基米德螺线在极坐标里使用以下方程表示:r(θ)=a+bθ

.改变参数a将改变螺线形状,b控制螺线间距离,通常其为常量。阿基米德螺线有两条螺线,一条θ > 0,另一条θ < 0。两条螺线在极点处平滑地连接。把其中一条翻转 90°/270°得到其镜像,就是另一条螺线。

圆锥曲线

椭圆,展示了半正焦弦

圆锥曲线方程如下:r=L/(1-e cosθ)

其中l表示半正焦弦,e表示离心率。 如果e < 1,曲线为椭圆,如果e = 1,曲线为抛物线,如果e > 1,则表示双曲线。

其中e表示离心率,p表示焦点到准线的距离。

其他曲线

由于坐标系统是基于圆环的,所以许多有关曲线的方程,极坐标要比直角坐标系(笛卡尔形式)简单得多。比如lemniscates, en:lima?ons, anden:cardioids。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/11 2:13:42