请输入您要查询的百科知识:

 

词条 LMS算法
释义

简介

全称 Least mean square 算法。中文是最小均方算法。

感知器和自适应线性元件在历史上几乎是同时提出的,并且两者在对权值的调整的算法非常相似。它们都是基于纠错学习规则的学习算法。感知器算法存在如下问题:不能推广到一般的前向网络中;函数不是线性可分时,得不出任何结果。而由美国斯坦福大学的Widrow和Hoff在研究自适应理论时提出的LMS算法,由于其容易实现而很快得到了广泛应用,成为自适应滤波的标准算法。

算法

LMS算法步骤:

1,、设置变量和参量:

X(n)为输入向量,或称为训练样本

W(n)为权值向量

b(n)为偏差

d(n)为期望输出

y(n)为实际输出

η为学习速率

n为迭代次数

2、初始化,赋给w(0)各一个较小的随机非零值,令n=0

3、对于一组输入样本x(n)和对应的期望输出d,计算

e(n)=d(n)-X^T(n)W(n)

W(n+1)=W(n)+ηX(n)e(n)

4、判断是否满足条件,若满足算法结束,若否n增加1,转入第3步继续执行。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/24 3:49:46